
NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR 

Subject: Heat Transfer and Fluid Flow                                                     Dr. H. S. Pali 

 

 

NAME OF DEPARTMENT : Metallurgical & Materials Engineering 
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Objective: 

     To understand the basic principles of heat transfer and fluid flow. 

UNIT 1 

Modes and Laws of heat transfer. CONDUCTION: Steady State and unsteady state. 

Heat flow through composite walls. Heating and cooling of plates, cylinders and 

spheres. CONVECTION: Free and forced convection. Reynolds, Grasshoofs, Nusselt 

and Station numbers.  

 UNIT 2 

RADIATION: Emissivity, absorptivity, reflectivity and transmissivity.  Simple Heat 

transfer  etween black and gray surfaces. Re-radiating surfaces. Heat losses from 

furnaces. Combined effects of conduction, convection and radiation. Steady and 

unsteady heat flow in some metallurgical processes, e.g melting, solidification, 

heating/cooling of ingots and billets, etc.  

UNIT 3 

FLUID FLOW: Viscosity and Newton’s law of viscosity. Newtonian  and non-Newtonian 

fluids. Conservation of mass and continuity equation. Energy of fluids. Euler’s and 

Bernoullis equations. Loss of energy due to friction. Flow through pipes. Laminar and 

Turbulent Flow, Reynold’s number. Compressed air and air blasts. Energy used for 

compression. Compressor and blower efficiency characteristics. 

 

 

 

 

 

 

 

 

 



NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR 

Subject: Heat Transfer and Fluid Flow                                                     Dr. H. S. Pali 

 

 

Introduction 

1.1 Difference between heat and temperature  

In heat transfer problems, we often interchangeably use the terms heat and temperature 

Actually, there is a distinct difference between the two. Temperature is a measure of th

e amount of energy possessed by the molecules of a substance. It manifests itself as a  

degree of hotness, and can be used to predict  the  direction of heat transfer.  The usual 

symbol for temperature is T. The scales for measuring temperature in    units are the  C 

celsius and Kelvin temperature scales.  

Heat, on the other hand, is energy in transit. Spontaneously, heat flows from a hotter bo

dy to a colder one. The usual symbol for heat is Q. In the SI system, commonunits for m

easuring heat are the Joule and calorie.  

 

1.2 Difference between thermodynamics and heat transfer  

Thermodynamics tells us: 

 •  how much heat is transferred (ΔQ)  

•  how much work is done (ΔW)  

•  final state of the system  

Heat transfer tells us:  

 • How (with what modes) ΔQ is transferred 

 • At what rate ΔQ is transferred   

• Temperature distribution inside the body  

 

 

1. Introduction  

Heat transfer is a science, which deals with the flow of heat from a higher 

temperature to lower temperature. Heat cannot be stored and it is defined as the 

energy in transit due to the difference in the temperatures of the hot and cold 

bodies. The study of heat transfer not only explains how the heat energy 

transports but also predicts about the rate of heat transfer. When a certain 
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amount of water is evaporated or condensed, the amount of heat transferred in 

either of the processes is same. However, the rate of heat transfer in both the 

cases may be different. 

At this point, it is very important to understand about the basic information that the 

phases of a substance (solid, liquid, and gas) are associated with its energy content. In 

the solid phase, the molecules or atoms are very closely packed to give a rigid structure 

(fig.1.1a). In the liquid phase, sufficient thermal energy is present, which keeps the 

molecules sufficiently apart and as a result the rigidity looses (fig.1.1b). In the gas 

phase, the presence of additional energy results in a complete separation and the 

molecules or atoms are free to move anywhere in the space (fig.1.1c). It must be 

noticed that whenever a change in phase occurs, a large amount of energy involves in 

the transition. 

 

Fig. 1.1: Relative molecular distance of different phases of a substance at a fixed 

temperature 

 (a) gas/vapour, (b) liquid, and (c) solid 

As we are dealing with the heating and cooling of materials in almost our all the 

processes, the heat transfer is an indispensable part of any of the industries. Therefore, 

heat transfer is a common subject in many engineering disciplines, especially 

mechanical and chemical engineering. Study of heat transfer has a vital role in the 

chemical process industries. Chemical engineers must have a thorough knowledge of 

heat transfer principles and their applications. 
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Heat flows from higher temperature to lower temperature. Though it looks simple, heat 

transfer is a quite complex phenomenon.  

There are three different modes in which heat may pass from a hot body to a cold one. 

These modes are conduction, convention, and radiation. It should be noted that the heat 

transfer takes place in combination of two or three modes in any of the real engineering 

application. In this chapter, we will briefly discuss about the different modes of heat 

transfer along with the various basic information that will help us as a building block for 

further study. 

1.1 Mode of heat transfer 

In this section, we will discuss about the three different modes of heat transfer. The 

discussion will help us to understand about the conduction, convection, and radiation. 

Moreover, we would be able to understand the basic difference between the three 

modes of heat transfer. 

1.1.1 Conduction 

Conduction is the transfer of heat in a continuous substance without any observable 

motion of the matter. Thus, heat conduction is essentially the transmission of energy by 

molecular motion. Consider a metallic rod being heated at the end and the other end of 

the rod gets heated automatically. The heat is transported from one end to the other 

end by the conduction phenomenon. The molecules of the metallic rod get energy from 

the heating medium and collide with the neighbouring molecules. This process transfers 

the energy from the more energetic molecules to the low energetic molecules. Thus, 

heat transfer requires a temperature gradient, and the heat energy transfer by 

conduction occurs in the direction of decreasing temperature. Figure 1.2 shows an 

illustration for the conduction, where the densely packed atoms of the rod get energized 

on heating and vibration effect transfers the heat as described in fig.1.2. 
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Fig.1.2: Different stages during conduction in a metallic rod 

Fig.1.2: Different stages during conduction in a metallic rod 1.1 Mode of heat transfer 

In this section, we will discuss about the three different modes of heat transfer. The 

discussion will help us to understand about the conduction, convection, and radiation. 

Moreover, we would be able to understand the basic difference between the three 

modes of heat transfer. 

1.1.1 Conduction 

Conduction is the transfer of heat in a continuous substance without any 

observable motion of the matter. Thus, heat conduction is essentially the 

transmission of energy by molecular motion. Consider a metallic rod being 

heated at the end and the other end of the rod gets heated automatically. The 

heat is transported from one end to the other end by the conduction 

phenomenon. The molecules of the metallic rod get energy from the heating 

medium and collide with the neighboring molecules. This process transfers 

the energy from the more energetic molecules to the low energetic molecules. 

Thus, heat transfer requires a temperature gradient, and the heat energy 

transfer by conduction occurs in the direction of decreasing temperature. 

Figure 1.2 shows an illustration for the conduction, where the densely packed 
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atoms of the rod get energized on heating and vibration effect transfers the 

heat as described in fig.1.2. 

Conduction takes place at a microscopic level. Atoms or molecules at higher 

temperature have high levels of energy. Through vibration, this energy is passed on to 

neighboring atoms and molecules. In other words, in conductive mode of heat transfer, 

vibrating atoms and molecules a part of their energy.  

This kind of heat transfer can take place between two or more substances or through 

the substance. Conduction can also take place when electrons move from one atom to 

another. Transient conduction takes place when temperature within an object changes a 

the function of time. 

 

1.1.2 Convection 

When a macroscopic particle of a fluid moves from the region of hot to cold 

region, it carries with it a definite amount of enthalpy. Such a flow of enthalpy 

is known as convection. Convection may be natural or forced. In natural 

convection, the movement of the fluid particles is due to the buoyancy forces 

generated due to density difference of heated and colder region of the fluid as 

shown in the fig.1.3a. Whereas, in forced convection the movement of fluid 

particles from the heated region to colder region is assisted by some 

mechanical means too (eg., stirrer) as shown in fig.1.3b. 

 

Fig.1.3: Heat transfer through convection (a) natural, and (b) forced 

Dell
Highlight
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Convection is a mode of heat transfer which takes place through the movement of 

collective masses of heated atoms and molecules. Convection requires actual flow of 

material particles whereas in conduction, the heat is transferred through vibration 

without the atoms or molecules leaving their original position. In convection, heat 

transfer takes place through both diffusion and advection.  

As convection requires the actual movement of the heated atoms/ molecules, it requires 

presence of a fluid for heat transfer.  

 

1.1.3 Radiation 

We have seen that a medium is required for the heat transfer in case of 

conduction and convection. However, in case of radiation, electromagnetic 

waves pass through the empty space. Electromagnetic waves travel at the 

velocity of light in vacuum. These waves are absorbed, reflected, and/or 

transmitted by the matter, which comes in the path of the wave. We will limit 

our discussion (in this NPTEL course) to the thermal radiation. Thermal 

radiation is the term used to describe the electromagnetic radiation, which is 

observed to be emitted by the surface of the thermally excited body. The heat 

of the Sun is the most obvious example of thermal radiation. 

There will be a continuous interchange of energy between two radiating bodies, with a 

net exchange of energy from the hotter to the colder body as shown in the fig.1.4. 

 

Fig.1.4: Heat transfer through radiation 
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Radiation is a mode of heat transfer which takes place through vacuum and hence, 

does not need a physical medium. Radiation takes place either through vacuum or 

through a transparent medium. In radiative mode, heat transfer takes place through 

photons present in the electromagnetic waves. The random movement of atoms and 

molecules in heated substances results in emission of electromagnetic waves which 

carry the heat to be transferred. The radiative heat transfer is governed by Stephen- 

Boltzman law. A body radiates heat at all temperatures above the absolute zero, 

irrespective of the ambient temperature. 

 

Modes and Laws of Heat Transfer 
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UNIT 1 

Modes and Laws of heat transfer. CONDUCTION: Steady State and unsteady state. Heat flow through 

composite walls. Heating and cooling of plates, cylinders and spheres. CONVECTION: Free and forced 

convection. Reynolds, Grasshoofs, Nusselt and Station numbers.  

 

Conduction 

Conduction may be viewed as the transfer of energy from the more energetic to the less energetic 

particles of a substance due to interactions between the particles. It is concept of atomic and molecular 

activity. 

Higher temperatures are associated with higher molecular energies, and when neighboring molecules 

collide, as they are constantly doing, a transfer of energy from the more energetic to the less energetic 

molecules must occur. In the presence of a temperature gradient, energy transfer by conduction must 

then occur in the direction of decreasing temperature. Collisions between molecules enhance this energy 

transfer. We may speak of the net transfer of energy by random molecular motion as a diffusion of 

energy. 

The situation is much the same in liquids (or any fluid), although the molecules are more closely spaced 

and the molecular interactions are stronger and more frequent. Similarly, in a solid, conduction may be 

attributed to atomic activity in the form of lattice vibrations. The modern view is to ascribe the energy 

transfer to lattice waves induced by atomic motion. In an electrical nonconductor, the energy transfer is 

exclusively via these lattice waves; in a conductor it is also due to the translational motion of the free 

electrons. 

Examples of conduction heat transfer are legion (crowed or mass). The exposed end of a metal spoon 

suddenly immersed in a cup of hot coffee will eventually be warmed due to the conduction of energy 

through the spoon. On a winter day there is significant energy loss from a heated room to the outside air. 

This loss is principally due to conduction heat transfer through the wall that separates the room air from 

the outside air. 

It is possible to quantify heat transfer processes in terms of appropriate rate equations. These 

equations may be used to compute the amount of energy being transferred per unit time. For heat 

conduction, the rate equation is known as Fourier’s law. For the one-dimensional plane wall shown in 

Figure 1, having a temperature distribution T(x), the rate equation is expressed as  

 

       
  

  
 ………………………….1 
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The heat flux q” (W/m
2
) is the heat transfer rate in the x 

direction per unit area perpendicular to the direction of transfer, 

and it is proportional to the temperature gradient, dT/dx, in this 

direction. The parameter k is a transport property known as the 

thermal conductivity (W/m.K) and is a characteristic of the wall 

material. The minus sign is a consequence of the fact that heat 

is transferred in the direction of decreasing temperature 

(Second law). Under the steady-state conditions shown in 

Figure 1, where the temperature distribution is linear, the 

temperature gradient may be expressed as       

  

  
 
     
 

 

 

And the heat flux is then 

     
     
 

 

     
     
 

  
  

 
 

 

Note that this equation provides a heat flux, that is, the rate of heat transfer per unit area. The heat rate 

by conduction, qx (W), through a plane wall of area A is then the product of the flux and the area, qx=q”A  

 

1.2 Material properties of importance in heat transfer 

Before understanding heat transfer laws, we have to understand various properties of the material. This 

section is devoted to a brief discussion of some of the important properties of the material. 

 

1.2.1 Thermal conductivity 

As discussed earlier, the heat conduction is the transmission of energy by molecular action. Thermal 

conductivity is the property of a particular substance and shows the ease by which the process takes 

place. Higher the thermal conductivity more easily will be the heat conduction through the substance. It 

can be realized that the thermal conductivity of a substance would be dependent on the chemical 

composition, phase (gas, liquid, or solid), crystalline structure (if solid), temperature, pressure, and its 

homogeneity. 

The thermal conductivity of various substances is shown in table-1. 
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Table-1.1: Thermal conductivities of various substances at 0oC 

 

 

The general results of the careful analysis of the table-1.1 is as follows, 

 Thermal conductivity depends on the chemical composition of the substance. 

 Thermal conductivity of the liquids is more than the gasses and the metals have the highest. 

 Thermal conductivity of the gases and liquids increases with the increase in temperature. 

 Thermal conductivity of the metal decreases with the increase in temperature. 

 Thermal conductivity is affected by the phase change. 

These differences can be explained partially by the fact that while in gaseous state, the molecules of a 

substance are spaced relatively far away and their motion is random. This means that energy transfer by 

molecular impact is much slower than in the case of a liquid, in which the motion is still random but in 

liquids the molecules are more closely packed. The same is true concerning the difference between the 
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thermal conductivity of the liquid and solid phases. However, other factors are also important when the 

solid state is formed. 

Solid having a crystalline structure has high thermal conductivity than a substance in an amorphous solid 

state. Metal, crystalline in structure, have greater thermal conductivity than non-metal (refer table-1.1). 

The irregular arrangement of the molecules in amorphous solids inhibits the effectiveness of the transfer 

of the energy by molecular impact. Therefore, the thermal conductivity of the non-metals is of the order of 

liquids. Moreover, in solids, there is an additional transfer of heat energy resulting from vibratory motion of 

the crystal lattice as a whole, in the direction of decreasing temperature. 

Many factors are known to influence the thermal conductivity of metals, such as chemical 

composition, atomic structure, phase changes, grain size, temperature, and pressure. Out of the above 

factors, the temperature, pressure, and chemical composition are the most important. However, if we are 

interested in a particular material then only the temperature effects has to be accounted for. 

As per the previous discussion and the table it is now clear that the thermal conductivity of the metal is 

directly proportional to the absolute temperature and mean free path of the molecules. The mean free 

path decreases with the increase in temperature so that the thermal conductivity decreases with the 

temperature. It should be noted that it is true for the pure metal, and the presence of impurity in the metal 

may reverse the trend. It is usually possible to represent the thermal conductivity of a metal by a linear 

relation k = ko(1 + bT), where ko is the thermal conductivity of the metal at 0
o
C, T is the absolute 

temperature, and b is a constant.  

In general the thermal conductivity of the liquids is insensitive to the pressure if the pressure is not very 

close to the critical temperature. Therefore, in liquids (as in solids) the temperature effects on the thermal 

conductivity are generally considered. Liquids, in general, exhibit a decreasing thermal conductivity with 

temperature. However, water is a notable exception. Water has the highest thermal conductivity among 

the non-metallic liquids, with a maximum value occurring at 450
o
C.  

The thermal conductivity of a gas is relatively independent of pressure if the pressure is near 1 atm. 

Vapours near the saturation point show strong pressure dependence. Steam and air are of great 

engineering importance. Steam shows irregular behaving rather showing a rather strong pressure 

dependence for the thermal conductivity as well as temperature dependence. 

The above discussions concerning thermal conductivity were restricted to materials composed of 

homogeneous or pure substances. Many of the engineering materials encountered in practice are not of 

this nature like building material, and insulating material. Some material may exhibit non-isotropic 

conductivities. The non-isotropic material shows different conductivity in different direction in the material. 

This directional preference is primarily the result of the fibrous nature of the material like wood, asbestos 

etc. 
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1.2.2 Specific heat capacity 

Now we know that the thermal conductivity facilitates the heat to propagate through the material due to 

the temperature gradient. Similarly, specific heat capacity or specific heat is the capacity of heat stored by 

a material due to variation in temperature. Thus the specific heat capacity (unit: kJ/kg·
o
C) is defined as 

the amount of thermal energy required to raise the temperature of a unit amount of material by 

1
o
C.  Since heat is path dependent, so is specific heat. In general, the heat transfer processes used in the 

chemical process plant are at constant pressure; hence the specific heat capacity (co) is generally used. 

 

Frequently Asked Questions (Module 1) 

 

Q.1. What is the basic difference among conduction, convection, and radiation? 

Q.2. Define thermal conductivity. 

Q.3. What is the order of thermal conductivity of gas, liquid, and metal in general? 

Q.4. What should be the approach to select a good thermal insulator? 

Q.5. Discuss the effect of temperature on thermal conductivity. 

Q.6. What is the difference between thermal conductivity and specific heat capacity? 
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Conduction: One Dimensional 

The fundamentals of heat conduction were established over one and a half century and its contribution 

goes to a French mathematician and physicist, Jean Baptiste Joseph Fourier. You may be aware that any 

flow whether it is electricity flow, fluid flow, or heat flow needs a driving force. The flow is proportional to 

the driving force and for various kinds of flows the driving force is shown in the table 2.1. 

 

Table 2.1. Various flows and their driving forces 

 

Thus the heat flow per unit area per unit time (heat flux, q’ ) can be represented by the following relation, 

 

 

where, proportionality constant k is the thermal conductivity of the material, T is the temperature and x is 

the distance in the direction of heat flow. This is known as Fourier’s law of conduction. 

The term steady-state conduction is defined as the condition which prevails in a heat conducting body 

when temperatures at fixed points do not change with time. The term one-dimensional is applied to a heat 

conduction problem when only one coordinate is required to describe the distribution of temperature 

within the body. Such a situation hardly exists in real engineering problems. However, by considering 

one-dimensional assumption the real problem is solved fairly upto the accuracy of practical engineering 

interest. 
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2.1 Steady-state conduction through constant area 

 

A simple case of steady-state, one-dimensional heat conduction can be considered through a flat wall as 

shown in the fig.2.1. 

 

Fig.2.1: Steady-state conduction through a slab (constant area) 

: The flat wall of thickness dx is separated by two regions, the one region is at high temperature (T1 ) and 

the other one is at temperature T2 . The wall is very large in comparison of the thickness so that the heat 

losses from the edges are negligible. Consider there is no generation or accumulation of the heat in the 

wall and the external surfaces of the wall are at isothermal temperatures T1 and T2 .  The area of the 

surface through which the heat transfer takes place is A. Then the eq.2.2 can be written as, 

 

The negative sign shows that the heat flux is from the higher temperature surface to the lower 

temperature surface and is the rate of heat transfer through the wall. 

Now if we consider a plane wall made up of three different layers of materials having different thermal 

conductivities and thicknesses of the layers, the analysis of the conduction can be done as follows. 

Consider the area (A) of the heat conduction (fig.2.2) is constant and at steady state the rate of heat 

transfer from layer-1 will be equal to the rate of heat transfer from layer-2. Similarly, the rate of heat 

transfer through layer-2 will be equal to the rate of heat transfer through layer-3.  If we know the surface 
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temperatures of the wall are maintained at T1 and T2 as shown in the fig.2.2, the temperature of the 

interface of layer1 and layer 2 is assumed to be at T' and the interface of layer-2 and layer-3 as T". 

 

Fig.2.2: Heat conduction through three different layers 

The rate of heat transfer through layer-1 to layer-2 will be, 

 

and,  

The rate of heat transfer through layer 2 to layer 3 will be, 

 

and, 

The rate of heat transfer through layer 3 to the other side of the wall, 

 

On adding the above three equations, 

 

Where, R represents the thermal resistance of the layers. The above relation can be written analogous to 

the electrical circuit as, 
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Fig 2.3: Equivalent electrical circuit of the fig.2.2 

 

The wall is composed of 3-different layers in series and thus the total thermal resistance was represented 

by R (= R1 + R2 + R3 ). The discussed concept can be understood by the illustrations shown below. 

The unit of the various parameters used above is summarized as follows, 

 

 

 

 



NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR 

Subject: Heat Transfer and Fluid Flow                                                     Dr. H. S. Pali 

 
Illustration 2.1 

The two sides of a wall (2 mm thick, with a cross-sectional area 

of 0.2 m
2
) are maintained at 30

o
C and 90

o
C. The thermal 

conductivity of the wall material is 1.28 W/(m·
o
C). Find out the 

rate of heat transfer through the wall? 

Solution 2.1 

Assumptions 

1. Steady-state one-dimensional conduction 

2. Thermal conductivity is constant for the temperature range of 

interest 

3. The heat loss through the edge side surface is insignificant 

4. The layers are in perfect thermal contact 

Given, 

        

 

 

 

Analogy between Flow of Electricity and heat transfer: 
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EXAMPLE-2: 

The wall of an industrial furnace is constructed from 0.15-m-thick fireclay brick having a thermal 

conductivity of 1.7 W/m.K. Measurements made during steady state operation reveal temperatures of 

1400 and 1150 K at the inner and outer surfaces, respectively. What is the rate of heat loss through a wall 

that is 0.5 m by 1.2 m on a side? 

 

Solution: 

Known:  Steady-state conditions with prescribed wall thickness, area, thermal conductivity, and surface 

temperatures. 

 

Assumptions: 

1. Steady-state conditions. 

2. One-dimensional conduction through the wall. 

3. Constant thermal conductivity. 

Analysis: Since heat transfer through the wall is by conduction, the heat flux may be determined from 

Fourier’s law. 

 

The heat flux represents the rate of heat transfer through a section of unit area, and it is uniform 

(invariant) across the surface of the wall. The heat loss through the wall of area is then 

 

Comments: Note the direction of heat flow and the distinction between heat flux and heat rate. 
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Illustration 2.2 

 

Solution 2.2 

Assumptions: 

1. Steady-state one-dimensional conduction. 

2. Thermal conductivity is constant for the temperature 

range of interest.  

3. The heat loss through the edge side surface is 

insignificant. 

4. The layers are in perfect thermal contact. 

 

Putting all the known values,  

 

Thus, 
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The previous discussion showed the resistances of different layers. Now to understand the concept of 

equivalent resistance, we will consider the geometry of a composite as shown in fig. 

The wall is composed of seven different layers indicated by 1 to 7. The interface temperatures of the 

composite are T1 to T5 as shown in the fig.2.6a. The equivalent electrical circuit of the above composite is 

shown in the fig 2. below, 

 

 

Fig. 2 Composite wall, and (b) equivalent electrical circuit 

The equivalent resistance of the wall will be, 

 

where, 

  

Therefore, at steady state the rate of heat transfer through the composite can be represented by,             

     where, R is the equivalent resistance. 



 Heat Transfer
Prof. Sunando Dasgupta
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Lecture - 02
Introduction to Heat Transfer (Contd.)

So, by now we are familiar with the modes of Heat Transfer and the fundamental relation

of conduction, which is Fourier’s law, which gives you the heat flux vector as consisting

of components in 3 directions and the components in each direction can be expressed as

proportional to the temperature gradient in that direction.

In other words qx, which is the x component of the heat flux, vector q is going to be

proportional to δT/δx, which is the derivative and is the change in temperature in the x

direction  and  the  proportionality  constant  being  a  property  of  the  material  which  is

known as thermal conductivity. What we are going to do next is fundamental relation,

which is known to all of us which is conservation of energy. So, what does conservation

of energy tell us and how the conservation of energy can be related to heat transfer, in

order with an aim to obtain that temperature at a specific point at a given instant of time,

because  in  heat  transfer  that  is  what  is  required!  You  need  to  find  out  what  is  the

temperature of an object at a specific point and at a specific instant of time.

Since, we are studying conduction right now we understand that conduction is essentially

energy, which depends on temperature gradient. So, we need to precisely know what is

the temperature profile inside an object, in order to find what is its gradient, which when

multiplied with k would give us the flow of heat through a plane, which is perpendicular

to the point where the temperatures are uniform.

So, if we have 2 points at 2 different temperatures this point will call it as an isothermal

surface where everywhere the temperature is equal to T 1 and this is the T 2 another

surface and the amount of transfer between these two would simply be governed by

Fourier’s law, but the concept of control volume is going to be important.

Because not only you are going to have transport of heat between point 1 and point 2

there will be situations in which you are going to have heat generation between point 1

and point 2 as well. So, let us think of a current flowing through an electric wire. So, we



are going to have some sort of joule heating which is present in between two points that

you need to take into account in order to find what is the temperature of the object at any

given point?

So, when you are generating heat and when you are having some amount of heat flowing

in and some amount of heat flowing out.  And as a result  of all  this the total  energy

content of the volume that you see will keep on changing. In other words let us think of

just a block of copper, which you have placed on a hot surface and some amount of

energy enters the block of copper, because of its proximity with a hot surface. And as it

enters let us assume that no heat leaves from the copper surface to the surrounding. Let

us say to begin with the temperature of the copper surface is the same as that of the

surrounding,  so,  no heat  transfer  takes  place.  If  it  is  different  as  the  copper  surface

becomes more and more hot, it is going to lose energy from all the other surfaces to the

surrounding.

So, you have some energy in by conduction,  some energy which is going out of the

copper block to the atmosphere again by conduction. And let us say by some means you

are  generating  some amount  of  heat  inside  the  inside  the  copper  block and it  is  an

unsteady state process.

So, if I think of an instant of time the amount of energy which comes in to the copper

block, the amount of energy which goes out of the copper block, the amount of energy

which you are generating artificially inside the copper block, all these would result in the

total amount of energy which is stored in the copper block.

So, we are going to talk that is what conservation of energy is all about, the amount in

minus the amount out plus any heat generation, that is taking place must be equal to the

energy to the time rate of change of energy contained within the copper block. So, this

copper block is therefore, is termed as the control volume. So, control volume is what in

something  it  is  an  enclosed  space,  which  has  a  specific  mass  and  the  form  of

conservation law, which is applicable for such a control volume. I am going to write that

which is in minus out plus or minus, plus is for where energy is generated inside the

control volume.
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And minus when there is some depletion of energy, which is getting depleted inside the

control volume and will see the examples of that in this. So, this must be equal to stored,

the  time  rate  of  change  of  energy  stored  in  all  these  in  and  the  out.  So,  this  is

st
in out g st

dE
E E E E

dt
      

So, this is the conservation equation and the enclosed space with the fixed mass is known

as the control volume. So, this is a control volume and you have some amount of energy,

which is coming in and this is the time rate of energy, which is going in out and there

may be some amount of energy, which is generated in here as a result of which you are

going to have the rate of energy stored inside the control volume will also be different.

So, the conservation equation can be written for a control volume that has a fixed mass.

So, this is what control volume is and this is the form of the conservation equation that

you would expect you would expect for such a situation, then what is a control surface?

Control surface is again an imaginary surface, which together form the boundary of the

control volume. So, if you think of a copper block a rectangular copper block, then the 6

surfaces these and the 2 up and the top and the bottom, the 6 surfaces of the copper block

those are known as the control surfaces, which defines the control volume, which defines

what is the volume, what is the mass of copper, which is contained in the space. So, they

are known as control surfaces. By definition control surfaces do not have any mass of



their own whereas, control volumes do. So, the major distinction between control volume

and control surface is control surfaces do not have any mass. So, that is the difference

between control surface and control mass. So, the conservation equation, which we did

right for the control volume has to be modified for control surfaces as they do not have

any mass of their own. If they do not have any mass of their own, then they cannot store

any energy and if there is no mass of the control surface then they also cannot generate

any energy.

So, for a control surface in the conservation equation, you need to drop the gE term, the

time rate of change of energy generated in the system, as well as the stE that is the time

rate  of change of  energy stored in the  control  volume.  So,  for a  control  surface the

conservation equation would simply turn out to be inE = outE . So, this is what you are

going to get for a control surface. So, this is for a control surface and what you have here

is  for a control volume.  So, that  is  the difference between a control volume and the

control surface formulation as well as the conservation of energy is concerned.

So, this is primarily as a control surface (CS) as a CS does not have any mass of their

own  and  they  simply  define  a  control  volume.  And  these  are  the  forms  of  the

conservation equation. Now, if you look at this equation the conservation equation for a

control volume there is what is going to be.It is what is going to how what it would look

like if I apply it for a steady state process. What if there is no generation which is present

in such a system? It is a case of the block again where 2 surfaces are maintained at 2

different temperatures, ok.

However, there is no generation of heat in there and you allow the process, allow the

process sufficient time such that a steady state has reached. So, the moment a steady state

is reached the amount of energy stored inside the control volume does not change, cannot

change, ok. And, if there is no heat which is generated inside the control volume then

that term will also disappear. So, what you have for a system at steady state, so, for if

you have a system at steady state with no heat generation, this equation would simply be

equal to inE = outE .

So, when you when you when you look at  these 2 equations in absence of any heat

generation and at steady state, this becomes equal and becomes identical with the control



surface equation. However, fundamentally conceptually you must appreciate what is the

difference between a control surface and a control volume. The next what I am going to

write is surface energy balance.

(Refer Slide Time: 13:00)

So, let us say that let us assume that I have a block this is my x direction and the over

here I have the temperature this is the temperature axis and this edge I am taking as my

control surface. So, the temperature is T1 here and the temperature is T2 at this point and

over here it is exposed to an ambient air ambiance with the temperature equal to T∞ at

this point.

So, between this is a solid and here you have as air. So, in the solid the principle mode of

heat transfer in, since there cannot be any motion of the molecules. So, in a solid the heat

gets transferred from 1 point to the other by means of conduction only, as the molecules

cannot on an average move from their positions. So, in absence of any heat generation in

a system and we will see subsequently why in absence of heat generation and at steady

state the temperature distribution is going to be linear.

So, the temperature distribution in such a case will be linear, and therefore this is going

to be the difference and this is going to be the profile where this T is a function of x, but

it is a linear function of x. Now let us say that , this is my control surface. So, the red line

simply denotes the extend denotes that this is my this is this is my control surface ok.



So, you are going to have q” conduction which is moving towards the control surface

and over here from the control surface the heat is going towards air by q” convection. So,

you have heat gets transported in the solid by conduction, heat gets transported in the air

by  convection  and  this  is  a  reasonable  approximation  since  we  realize  that  thermal

conductivity of the solid is much more than thermal conductivity of air.

So, the principle mode of heat transfer on the air side of this solid interface is nothing,

but convection.  So, you can also assume that the air is moving with certain velocity

along the exposed sides of the block. Not only convection you may also have, if the

temperature of the solid is large radiation which is going on.

So, this surface the control surface can lose heat as a result of convection as well as

conduction as convection as well as radiation.  So, the heat that travels to the control

surface is; obviously, only by conduction and the heat which is lost from the surface is

convection and radiation. And, since we know that the control surface has no mass of its

own the conservation equation would simply be inE = outE .

And when you take this as the surface then q” conduction is simply going to be equal to

q double prime convection  plus  q double prime radiation.  So, most  of  the cases the

radiation becomes important only when the temperature is quite large, in many realistic

situations the radiation does not play a significant role as compared to conduction and

convection.

So, when that happens we can also drop this radiation in here since it may not be that

significant.  So,  we  have  conduction  equality  of  conduction  and  convection  across  a

control surface, 1 side of which faces the solid the other side is a flowing fluid of low

thermal  conductivity  because  this  is  a  prerequisite  low  thermal  conductivity  and

therefore, convection is the prevalent mode of heat transfer and your qconduction  is equal to

qconvection.

But, how does the temperature profile go from here to T∞. And therein lies something

which I will have to explain to you later. You will see more in greater detail that there

exists something, which is called as a boundary layer or a thermal boundary layer. What

is proposed is that all the temperature difference from T2 to T∞, this drop in temperature



from T2 to T∞ takes place over a region, which is very close to the solid surface and then

it asymptotically approaches the value of the temperature T∞.

So, if I enlarge this section it would look something like this. So, this is my control

surface this is T2 and the temperature profile changes drastically now this is my T∞. So,

temperature profile changes drastically over a region, which is very thin and this region

where the temperature changes from that of the base temperature to the temperature of

the free stream to the temperature of the free flowing air which is T∞, this is known as the

thermal boundary layer.

So, in a thermal boundary layer as I have shown you the temperature drops suddenly the

temperature changes suddenly till it reaches the temperature of the free stream. We will

discuss more about why and what is the significance of thermal boundary layer, is there

any experimental proof that there is something called a thermal boundary layer.

So, we would discuss that in subsequently, but what you have to accept now for the time

being is that for any convection process, the temperature change is sharply near the solid

fluid interface. And it reduces or increases depending on whatever be the case sharply

enriches the value of the free stream temperature.  And the thickness over which this

change over takes place is commonly known as the thermal boundary layer. I think in

your fluid mechanics you have you have already studied what is hydrodynamic boundary

layer thickness.

So, if you have a flat plate and a liquid is flowing over it then due to no slip condition the

velocity of the fluid on the solid liquid interface on the solid is going to be zero, that is

the no slip condition, but if you go above slightly above the plate the velocity here is

equal to the free stream velocity, which flows unperturbed over the solid surface if the

distance from the solid surface is beyond certain value.

So, the region over which this change in velocity from 0 to the free stream velocity takes

place is known as the hydrodynamic boundary layer. And you also probably know that

the viscous forces are important inside the thin hydro dynamic boundary layer, outside of

this boundary layer, the flow can be termed treated as inviscid or zero viscosity. So, you

have also probably have heard about 2 equations one is Navier Stokes equation and the

second is Euler’s equation.



So, Navier Stokes equation takes into account the viscosity the viscous forces, which are

present in a flowing fluid, whereas Euler’s equation assumes that the flow is inviscid and

the famous Bernoulli’s  equation can be derived from Euler’s equation and in its true

form the Bernoulli’s  equation can be used only for inviscid fluids. So, inside the the

momentum boundary layer, inside the hydrodynamic boundary layer, viscous forces are

present, outside of the boundary layer the viscous forces are unimportant, are not present.

So, this is that is the concept of hydrodynamic boundary layer. So, which I think you

know.  So,  based  on  same  concepts  the  concept  of  thermal  boundary  layer  is  also

prescribed, where the temperature is going to be the same as that of the solid, when we

think  about  the  fluid  very  close  to  the  solid  surface,  but  as  we  move  along  the

temperature  changes  sharply.  And  over  a  small  thickness  it  varies  from  TS the

temperature of the solid to T∞, which is the temperature of the fluid, which is flowing

past the solid surface.

So, that is the thermal boundary layer, the important point here is what I need to show

you is what would the profile the temperature profile look like for such a case. So, this is

my solid  and this  is  the temperature of the air  and this  side is  maintained at  a high

temperature TS1 and at a temperature TS2 over here as there is no heat generation an it is a

steady state case, it is going to be just a linear change from TS1 to TS2 inside the solid

where only conduction is present, outside of which the air or the air is flowing with some

velocity and a temperature constant temperature of T∞ which is lower than TS2.

So, the temperature change will be very sharp near the solid wall. So, this is what is

called as the thermal boundary layer and the complete profile would look something like

this.  So,  what  you  have  here  then  is  linear  profile  sharp  change  asymptotically

approaching the value of T∞. And, if you consider this point the flow due to conduction

must be equal to the flow due to convection, of course, assuming that there is there is no

radiation, radiation is not important in such a case. So, what is the methodology that one

has  to  follow  and  what  is  the  conservation  methodology  analysis  of  application  of

conservation laws?
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So, how do we apply the conservation laws? The first step is you define an appropriate

control volume, ok. Appropriate control volume with control surfaces. Then the second

is identify the energy processes and write the conservation equation.

So, these are the 3 steps which one should follow in order to use in order to apply the

conservation laws. So, what you do then is first you identify the control volume and the

control volume is defined in terms of control surfaces, you identify the energy processes

is  it  a  conduction,  is  it  convection,  is  it  both  conduction  and  convection,  whether

radiation  is  important  or  not  you  make  those  judgements  and  then  you  write  the

conservation equations.

And we so far, we know only about what to write for conduction. We are not sure what

to write for convection or for radiation, since we have not discussed that, but I will show

you what what would be the form of the rate equations for that. So, identify whether it is

conduction, convection or radiation and express the heat flow in using certain laws for

example, Fourier’s law for the case of heat conduction.

And, then what you are going to get is a governing equation for the process and I will

show how this governing equation for any system can be derived, can be developed. One

more  point  before  we  conclude  is  that  the  conservation  equations  is  valid  for  at

differential control volumes, as well as for an integral control volume.



So, we can assume that my control volume, its size is dx dy and dz. And then if we write

it appropriately what you are going to get is a differential equation. And, if you can solve

that  differential  equation  based  on  an  energy  conservation,  if  you  can  solve  that

differential equation you get temperature as a function of space coordinates, that is x y

and z and if it is an unsteady state process also as a function of time.

So, your temperature T as a function of x y z and time t is going to be the result of the

differential equation, which you have obtained for a differential control volume and the

approach by which the temperature at every point and at every instant, if it is, if it is

possible to obtain that the approach that gives you that is known as differential approach.

There is there is another approach, which does not care about how temperature varies at

every point in the in the control volume or at every instant. Though, in that approach we

will be satisfied with how does the system behave in an overall sense to obtain what

would be the overall behavior of this system as it gains energy, loses energy, and when it

comes towards a steady state.

So, the conservation equations can also be applied to an integral volume, which unlike

the differential approach has a finite length, height, and width. So, you have L1 length,

width and height as well as well as it is a function of time. So, the approach which will

give you an overall approach, which is will give you an overall value of the temperature

at a plane not at every point is known as the integral approach. For times you are more

interested in how does the system behave generally rather than what is going to happen

to each point in the system.

So, on one hand you have a detailed approach, which is a differential approach that we

would  see  also  you  have  an  approach  which  can  also  be  termed  as  an  engineering

approach, which is a control volume approach, where you are not interested in obtaining

the specific value and average value would do, ok.

So, you do not want to know how temperature at every x varies, you just want to know

what  is  the  temperature  of  this  plane  the  average  temperature  of  this  plane.  So,  the

approach  that  gives  you  that  is  known as  the  control  volume  approach,  the  control

volume approach, integral approach and you also have the differential approach, and we

would see what those are so, but the bottom line is using your conservation equations

somehow you have to write the governing equation for the system.



Once you have the governing equation you should be able to solve it utilizing some of

the  boundary conditions,  because  you know when you are  integrating  when you are

solving a differential equation you end up with integration constants. These integration

constants will have to be evaluated utilizing the physical description of the system. So,

what is going to be those physical descriptions of the systems that will act as boundary

conditions?

So,  something has to  be known for  to  convert  the physical  principles  into boundary

conditions. One example could be, and I will give you all the detailed examples in the

next class, one example could be that the temperature at a specific point in your control

volume is known to you.

So, let us talk about that you have this pen whose you would like to find out the heat

transfer taking place in this pen, but let us say that this edge of the pen is firmly in

contact with a solid surface which is maintained at a constant temperature of a 100º. So,

what you can say then is at when x equals 0 the temperature is known let us say 100º,

temperature is known. So, at a spatial coordinate that the specific value of temperature

may be known to you and that can act as boundary can act as a boundary condition.

So,  expressing  the  description  of  the  problem,  expressing  the  understanding of  your

problem in physical terms would give you boundary conditions, which you are going to

need to solve the governing equation. So, what would we do in the next class is first

identify the common boundary conditions that one would expect and then what is going

to be the form of the boundary condition considering only conduction because in their

initial part we will restrict ourselves to conduction.

So, we will write what is the differential equation? What is the governing equation the

differential  governing  equation  for  conduction  in  a  solid  and  what  are  the  possible

boundary conditions? So, with the help of the equation and the boundary conditions we

should  be  able  to  obtain  temperature  profiles  in  different  geometries  under  different

conditions  and they  that  would give  rise  to  some very interesting  and useful  results

which we will take up in the next class.
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Previously, we have derived what is the conduction equation for Cartesian co-ordinate

systems,  cylindrical  systems,  and  spherical  systems.  In  the  development  of  those

equations, we have assumed the temperature can vary in all three possible directions and

it can vary as a function of time as well. And there may be a situation in which some heat

is going to be generated inside the control volume.

So, the equation that we have that is the generalized governing equation for conductive

heat transfer in a solid medium. But, we are going to see some of the special cases which

arise out of this equation which has practical applications; for example, in many of the

situations we see that a plane wall has layers of insulation on it, to reduce the heat loss

during winter or heat gain during the summer.

So, when a plane wall has several layers of insulation attached on one side of it and if we

know the temperatures of each of the junctions between the insulator and the wall, then it

is possible to predict what is the total heat loss from the wall to the outside at steady state

conditions.  Because,  in  practical  applications  we mostly  are  concerned  with  what  is

going  to  happen  at  steady  state.  So,  it  is  important  therefore,  to  simplify  the  heat

diffusion equation for special conditions when you have only a plane wall and at steady

state. We would also add another restriction that there is no heat generation in the control

volume that we are considering. Again, going back to the example of heat loss from the

walls of a room at steady state with insulations on the outside of the wall; obviously,

there is no heat generation in the insulation.

We would also need to appreciate the fact that at steady state, no matter whatever be the

thickness of the insulation or the material of the insulation; the same heat goes through

all the layers. So, the heat rate is constant the amount of heat which will be lost by a hot

room with layers of insulation on the outside is a fixed quantity. And secondly, when you

think about a plane wall and insulation on top of it, then you do not have any variation in

the heat transfer area. So, the same area is exposed to heat transfer from inside the room;



to the outside, and the cross-sectional area does not change. So, therefore, the special

characteristics of a plane wall is that the area remains constant, and if the area remains

constant we understand from physical principles; that since there is no heat generation

and at  steady state,  the  same amount  of  heat  must  travel  through all  these layers  of

insulation.

So, for planar systems the heat; both the heat rate and the heat flux are constant; which

may not be the case for cylindrical systems or spherical systems. Because as you move

away from the center of a cylindrical or a spherical surface, the radius increases and

since  the  radius  increases  the  area  available  for  heat  transfer  also  increases.  So,  the

quantity of heat will remain constant, but the flux will not be constant. So, that is the

major difference of conduction in planar systems, at steady state and conduction in radial

or spherical systems.

The fact that heat flux may vary for non-planar systems will  also lead to interesting

observations,  that  it  will  also  affect  the  temperature  profile.  In  one  case  (for  planar

systems),  the  temperature  distribution  is  going to  be  linear;  whereas,  in  the  case  of

cylindrical and spherical systems, they are going to be non-linear.

So, our starting point for analysis of conductive heat transfer in plane walls starts with

the heat diffusion equation. And then we are going to simplify the equation based on its

one-dimensional heat transfer; no generation of heat and at steady state.
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So, we start first with this equation which we have derived previously in the class:

2 2 2

2 2 2

1T T T q T

x y z k t



   
   

   
. So, this is temperature as a function of x, y, z, as well as

time.

So, there is a transient component also attached to this and q


 is the heat generated per

unit volume. So, therefore if it is 1 dimensional and steady state condition then I can say

that T is a function only of x; let us assume that x is the direction in which the heat flow

takes place and T is not a function of time.

So, when I talk about steady state what I mean is that the temperature can be a function

of position, but at a given position the temperature is not a function of time. So, for the 1-

dimensional case temperature is a function of x, but temperature is not a function of time

and we will also assume that there is no heat generation in the system therefore q


, is 0.

So, if we apply these 3 conditions to the above equation, the governing equation reduces

from the heat diffusion equation as 
2

2
0

T

x





. 

Integrating the above equation would simply give you the temperature as a function of x

as:  1 2T C x C  ; where C1 and C2 are constants of integration. So, now to solve this I

need boundary conditions. Specifically, two boundary conditions are required and what

you would consider is that the temperatures at the two sides of the wall are known. 

Let us consider that T at x = 0; that means, at one edge of the wall the temperature let us

say it is a T1 and T at the other edge of the wall which is at x = L is equal to T2. And we

will assume that T1 is greater than T2 though the derivation will work fine; even if you do

it in the other way that T2 is greater than T1; only the direction of heat transfer will be

different.

So, when you use these two boundary conditions, the solution would turn out to be:



   2 1 1

x
T x T T T

L
   . So, this tells me that temperature varies linearly with x. So, this

clearly again shows that the temperature at any position is a function of x only and it

depends on the imposed temperature difference which is T1 minus T 2; it also depends on

the  geometric  parameter,  this  L  is  the  thickness  of  the  wall,  and  the  imposed

temperatures.

From Fourier’s law we know that q, the heat flow in the x direction is equal to minus k

times A dT/ dx where k is the thermal conductivity. So, one can write looking at this

expression and finding out 1 2T TdT

dx L


  and the heat flux is simply  1 2

xq k
T T

A L
  .

The important point to note here is that the heat flow; the total rate of heat flow with

units of Watt and heat flux with units of Watt per meter square both are independent of

x. So, our derivation simply shows what we have started with the basic premise that both

the heat rate and heat flux are constant in planar systems; which would not be the case

for a spherical or radial system, where the cross sectional area keeps on changing as you

move in the r direction.
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Now let us assume that we have a system of a plane wall with three materials which are

A,  B and C.  There  would  be  four  possible  junctions  between  these  three,  materials

(denoted by 1, 2, 3, and 4 respectively) and let us assume that the temperature profile is



linearly  decreasing.  And  as  you  can  see  that  as  you  move  from  1  towards  4  the

temperature decreases, and we know that heat always flows in the direction of decreasing

temperature.

So, at steady state the same q will flow through all the materials - A, B and C. So, in a

multi  layered  since  q  is  constant  we  can  write:  2 1
A A A

A

T T
q k A

x

 
   

 
 for  the  first

material;  and  3 2
B B B

B

T T
q k A

x

 
   

 
for  the  second  material  and  finally,  for  the  third

material - 4 3
C C C

C

T T
q k A

x

 
   

 
.

Rearranging the above equations, we get:

2 1
A A

A A

q x
T T

A k


    

3 2
B B

B B

q x
T T

A k


  

4 3
C C

C C

q x
T T

A k


  

The Ak , Bk , and Ck  are the conductive thermal conductivities of material A, material B,

and material C respectively; and Ax , Bx , and Cx are the thicknesses of each of these

materials.

Adding  the  above  three  equations  and  rearranging  them  by  taking  q  as  a  common

parameter would result in:

4 1

CA B

A A B B C C

T T
q

xx x
k A k A k A




 
   



It is to be noted for the case of materials with same cross-sectional area, the area term in

the denominator could also be taken to be a constant value. 

So,  what  I  can  think of  this  as  T 1 is  one of  my potential  and let  us  say I  have  a

resistance, then I have T 2 another resistance and I have T 3 and another resistance, and I

have T 4.

So, temperatures can be viewed as potentials and the heat transfer resistances are: A

A A

x

k A


;

B

B B

x

k A


; and C

C C

x

k A


. So, what you have then is the overall potential difference divided by

the sum of resistance. So, only thing is the potential difference to be replaced in Ohm’s

law to arrive at  the heat transfer law is  overall  temperature difference by sum of all

conductive resistances. 

So, you have 3 or 4 materials sandwiched one after the other and if do know what the

temperatures at  the 2 end points are, then you can find out what is the flow of heat

through this combination materials; through this multilayered wall. And the result that

you would get is something like what you have obtained in the case of Ohm’s law.

One  thing  to  be  noted  here  is  that  the  conduction  resistance  is  A

A A

x

k A


,  whereas  the

convection resistance (from Newton’s law of cooling) is equal to 1/h A. So, if a wall is

connected  with  the  convection  environment  then  I  am  going  to  have  3  conduction

resistances in series and a convection resistance being added to it.

We would now go to a situation which is more practical,  where these walls  through

which conduction takes place they are exposed to an environment outside air. So, the

room that I am sitting in it is an air-conditioned room; it has multiple layers of insulation

on the outside and then it is exposed to the outside ambient temperature. So, the amount

of heat loss from this wall is going to be combination of all the conduction resistances

due to the insulation and the wall that we have for this room; as well as what is the

convection resistance on the outside of the building which connects it to the ambient

temperature.



We will quickly see how the result would look like for a system in which I have both

conduction and convection; however, it is a planar system such that both the heat rate

and the heat flux are going to be constant. 

(Refer Slide Time: 23:02)

So, I have conduction, convection both are combined, and the diagram probably looks

something like this, where this side is T infinity 1 and this side let us say the temperature

is T infinity 2.

So, I have a hot fluid which is moving up in this direction on this side of the wall and I

have a cold fluid which is moving on the outside of this;  so, this  my wall.  And the

temperature here is T infinity 1, the temperature here is T infinity 2 and the temperature

is going to sharply fall because of the thermal boundary layer that we have discussed

before.

So, let us say this is the surface temperature of 1 and then I have a T S 2 which is the

surface temperature of 2 and then it falls to T infinity 2. So, over here the fall is also

going to be like this and in between T S 1 and T S 2; since it is a plane wall, at steady

state  without  any  heat  generation;  the  temperature  profile  must  be  linear.  The

temperature T infinity 1 is more than T infinity 2 and therefore, the flow of heat is going

to be from the left to the right.



So, this is a system in which I have conduction in the plane wall,  convection on the

inside as well as on the outside of the plane wall. So, if I draw the resistance diagram for

this where the outside potential is T infinity 1 and the potential over here is T infinity 2;

these are the 2 temperatures  then I  have some sort  of a convection resistance which

brings me to T S 1 and then the conduction resistance which brings me to T S 2 as per

the diagram and then I have a convection resistance which then results in asymptotically

and smoothly merges with T infinity 2.

So, this is my convection resistance which must be equal to and let us assume that this

hot fluid maintains a convection coefficient h1 over here and a convection coefficient of

h2 at this point. So, therefore,  the resistance is simply going to be  
1

1

Ah
;  as we have

discussed before. The conduction resistance is going to be 
L

kA
 ; where L is the thickness

of the wall, A is the area, k is the thermal conductivity and over here it is going to be

2

1

Ah
.

So, that is what we would get in this case therefore, the total flow of heat q is simply

going to be T infinity 1 minus T infinity 2 divided by R total; where R total refers to the

algebraic sum of these 3 resistances; since they are in series. So, this is R total would

simply  be  equal  to  
1 2

1 1

A A

L

h kA h
  that  is  the  total  resistance  to  heat  transfer  in  this

system.

It is sometimes advisable to express these 3 resistances is in terms of an overall heat

transfer coefficient. And we would see the reference to overall heat transfer coefficient

coming many times in convective heat transfer not only in convective heat transfer, but

more commonly in the case of designing of heat exchange equipments, where instead of

each of these individual resistances we express them in terms of an overall resistance and

this is generally denoted by the symbol U and therefore, the q the heat flow is going to be

U A,  delta  T  overall  as  I  mentioned  the  U  appears  mostly  in  the  case  of  conduct

convective heat transfer.



So, the total amount of heat transfer is simply going to be according to Newton’s law of

cooling as q equals U A delta T, where U is the overall coefficient which may contain

both conduction and convection as we have seen in the example that we are discussing.

The A is the cross-sectional area through which the heat transfer takes place and delta T

is the overall temperature difference. 

And it; obviously, does not assume that it is a linear or anything, but we understand that

it is going to be linear in the solid, but it is going to have a shape which is where the

temperature from the ambient comes to the temperature of the surface in a fashion which

is consistent with our explanation based on thermal boundary layers.
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Now, let us look at composite walls which are slightly different. Let us say you have a

system in which up to this point, the wall is made of some material and from this point

onwards it is of another material, but in between you have 2 different materials.

So, you have a material E with a thermal conductivity k E of length L E; for this one its

length is going to be LF, the thermal conductivity is going to be the k F and this is

material F. And I have k G in here, this is material G and this is material H where it is

going to be L H and k H and the temperature here on this side is going to be the T 1 on

this side it is going to be T 2.



So, as you can see that the heat is going to flow; if T 1 is greater than T 2 heat is going to

flow from 1 to 2, but in here after it reaches this surface; part of the heat is going to move

through this, part of the heat is going to move through this and they are going to emerge

in material H and flow. So, this is the overall direction of q, but at this location at this

plane, it is going to get divided and at this plane it going to combine; so that you get the

same q and here you also going to get q.

This is a 2 D condition where the temperature is not a going to be a function of x alone, it

could also be a function of y. So, there are 2 ways by which you can represent this in

terms of an equivalent electric circuit. So, you have T 1 on one side T 2 on the other side

and here the resistance is simply going to be E

E

L

k A
 and here it is going to be 

2

F

F

L
A

k
. We

write A/2 because we assume that half of the area is taken up by the material F and half

of the area is taken by material G.

So, that is why I am putting it A by 2; it can be any fraction and it does not matter one

third of the area can be made of F and 2 third will be made of G. So, appropriately the

fraction of area is to be is to be replaced over here and, in this case, it is going to be

2

G

G

L
A

k
; as I said A by 2 is just for this specific case. And over here it is going to be H

H

L

k A
.

So, you have 3 resistances in series for the top part and so, this is my T 2 and this is my

T 1 and heat is going to flow through this and through this. So, q 1 is flowing through

this and q 2 is flowing through this where the sum of q 1 plus q 2 is going to be equal to

q.

So, whenever you come across a composite walls; it is customary to express them either

like this or in either like this or in this fashion, but in both cases we have to appreciate

that near the junctions there would be 2 dimensional effects, 2 dimensional conduction

where T is going to can be a function of both x and y where y is this direction and x is at

this direction.



Explaining  these  complicated  flows  of  heat  through  composite  walls  by  a  simple

resistance  in  series  or  resistance  in  parallel  mechanism  would  only  give  you  an

approximate value of the temperature, the junction temperatures and the temperatures the

total flow of heat. So, this is an approximation and higher the difference between the

thermal conductivities between the adjacent layers the error is going to be enhanced.

So, one should be careful about expressing the results in this specific form and most of

the time, it is going to be dictated by how fast you want a result; whether you can tolerate

approximations and what is the physical condition of difference in thermal conductivities

such that the difference in temperature across a fixed x is not that significant. So, that

must be considered before you start solving it.
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Lecture - 06
Temperature Distribution in Radial Systems

In the last class we discussed about what would be the resistance for heat flow through a

planar  wall  or  a  combination  of  several  plane  walls.  And,  there  we  saw  that  the

temperature  difference  between two ends of  the wall  can be viewed as the potential

difference which causes the heat to flow from high temperature to low temperature and

the resistance, if the heat flow can be expressed in the form which is similar to that of

ohm’s law where the potential difference is to be replaced by the temperature difference

and  the  current  is  to  be  replaced  by  the  heat  flow.  And  whatever  we  have  in  the

denominator of q equals δT by r, this r is equivalent to thermal resistance.

And the thermal resistance we have evaluated for a plane wall.  And also if we have

several such walls sandwiched one after the other then the overall temperature difference

between the outer edge of wall 1 and the outer edge of wall n, then, this temperature

difference is the overall temperature difference i.e. overall potential gradient. And the

denominator is going to be a sum of all the individual resistances of each of these walls.

So, in essence the heat flow through a composite wall where cross sectional areas remain

the same at steady state can be expressed as heat flow equal to the overall temperature

difference by the sum of all resistances. And therefore, all these resistances it has been

shown that they are in series.

So, based on that we now clearly understood that the resistance of the plane wall is going

to  depend  on  the  geometry;  that  means,  what  is  a  cross  sectional  area,  what  is  the

thickness and will also going to depend on the thermo physical property which is the

thermal conductivity of the specific wall that we are considering. So, the resistance is

simply going to be L, where L is the thickness divided by k times A, where, k is the

thermal  conductivity  of the material  and A is  the area which is  perpendicular  to  the

direction of heat flow.



Resistance = 
.

L

k A

We have also seen that for composite walls of different type in which you have wall

number 1 whose area is ,  then another wall of different thermal conductivity whose area

is let us say A by 2 and another wall, wall number 3 whose area is a by 2, but it is of

another material. So when such walls, composite walls of unequal cross sectional area

are put together then there are two ways by which you can represent the heat flow; one is

you can assume that there is going to be a series, that is the top 3 are going to be in series

whereas the top and the bottom series are going to in parallel. So, we discussed about

that as well.

One of the characteristic features of heat flow through plane wall is that the heat flow is

constant, not only heat flow at steady state is constant, the heat flux is also constant since

the cross sectional area which is perpendicular to the direction of heat flow does not

change. So, as in planar systems the cross sectional area does not change with x, with the

direction of heat flow therefore,  both the heat rate and the heat flux are going to be

constant.

However, I have mentioned in the previous class that for radial systems and for spherical

systems in which as you move in the direction of r, the cross sectional area keeps on

changing. And therefore, even though the conservation equation demands that heat rate

has to be a constant, the flux may not be a constant. And therefore, we are going to have

a different expression for the resistance to heat flow for the case of radial systems and for

spherical systems. So, that is what we are going to analyze in today’s class.

So, it is going to be radial temperature distribution at steady state and the mode of heat

transfer is conduction, but you can always have convection at the outer or the inner edges

of a radial of a wall. And therefore, it in that case it is going to become a convection

conduction problem, but for the time being let us start first with conduction only case in

a radial system.



(Refer Slide Time: 05:35)

So, the figure that you see over here is that of a that of a hollow cylinder whose inner

radius is equal to ri and the outer radius is r0 and the temperature over here in at the inside

is maintained at Ti whereas, the temperature at the outside is maintained at To. So, this is

a situation the length of the hollow cylinder is L and we are trying to find out what is the

flow of heat through this area to outside. So, if we assume that Ti is greater than To then

this  is  the radial  direction  in  which heat  will  flow through the  solid  material  of  the

cylinder and we are trying to find out what is going to be the resistance for heat flow.

For this case for steady state condition with no heat generation and the case where T is as

you can see is going to be a function of r only it is definitely not a function of θ and it is

not a function of z. So, T is a function of r only therefore, the heat diffusion equation for

radial  systems  reduces  to  only  this  much,  because  we  do  not  have  to  consider  the

variation of temperature with r or θ. So, T is not a function of either z or θ. So therefore,

all  the terms containing  gradient  of  T with respect  to  z  or  with respect  to  θ can be

cancelled as it is a steady state one. So, T is not a function of time and there is no heat

generation. So, therefore, if you look at the heat diffusion equation this is the form it is

going to take ok.

1
0

d dT
kr

r dr dr
 

 
 

And one can integrate this equation and what you get is 



1 2( ) lnT r C r C 

Boundary conditions: 

T(ri) = Ti; T (r0)= To

So, this is your governing equation and in order to solve the governing equation you

need 2 boundary conditions which are the 2 known temperatures in this case. So, T at r i

is equal to Ti and the second is T at r0 is equal to To. So, when you put these 2 boundary

conditions to evaluate C 1 and C 2, the final expression, that you are going to get is

2

( ) ln
ln

i o
o

i

o

T T r
T r T

r r
r


 

 So here, what I think we should appreciate is that the temperature distribution unlike the

case  of  planar  system  is  not  a  linear  function  of  position,  but  it  is  going  to  be  a

logarithmic function of the radial location of the plate.

So, that is very important to note that it is no longer going to be linear distribution, it is

going to be logarithmic distribution, and as you move in the direction towards the outer

radius the area of heat flow, the area available for heat flow continuously increases. So,

since it increases the temperature, it is not going to be linear and temperature here you

can see it is going to be linear function of position.

Now, what is remaining is since we are trying to correlate cause and effect, the cause

being the temperature difference and the effect being the heat flow and we are trying to

find a relation or express our results  in the form of something similar to ohm’s law

between cause and effect.  So,  if  you do that  to  this  equation  then automatically  the

resistance to conductive heat transfer in radial systems will come out. So, that would be

our next exercise to see what form the resistance would take in a radial system.

So, if you look at this equation once again then I can write this as

1

ln

i o

i

o

T TdT
rdr r
r






Using Fourier’s law,

2 ( ) 2 ( )

ln ln

i o i o
r

i o

o i

k L T T kL T T
q

r r
r r

   
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So, if I take this to the next logical step and here you see this is the effect and this is the

cause. So, if I bring twice by k L in the denominator what you have is something similar

to ohms law

( )

ln

2

i o
r

o

i

T T
q

r
r

kL




where the cause is  the potential  difference is  a thermal  potential  difference which is

expressed as temperature difference, and the effect is the radial flow of heat. And what I

have in the denominator is 
ln

2

o

i

r

r

kL

 that simply is the resistance to heat transfer for radial

systems.

(Refer Slide Time: 12:15)



So, I am going to write in the next page as temperature difference. So, what you have

here in the denominator is your resistance the thermal resistance which; obviously, is

this. 

ln

2

o

i
th

r

r
R

kL


So,  this  is  an  important  result  which  gives  us  what  would  be  the  resistance  to  heat

transfer in such case. Let us assume that you have a composite situation in which you

have a number of walls like this, so this is r2. Similarly have r3 and r4 with each one

having thermal conductivity of k1, k2 and k3 and you also have convection inside as well

as convection outside, with the inside condition given as the temperature of the fluid in

here is T∞1  which is creating a convection coefficient of h1 at the inner surface of the

composite wall.

On the other side, you have T∞2 as the temperature of the fluid which is made to flow on

the outside which is also producing heat thermal convective heat transfer coefficient of

h2.  This  is  quite  common  in  many  of  the  practical  situations  for  example,  in  heat

exchangers which we would see, where the hot fluid let us assume that it  is flowing

through a tube and somehow it is going to come in thermal contact with a cold fluid with

which it will exchange heat. And therefore, the cold heat is going to be heated, going to

absorb, going to gain energy out of this hot fluid.

And let  us  see  hot  fluid,  fluid  is  flowing  from point  a  to  point  b  from where  it  is

produced to where let  us say it  is  going to  a reactor.  So,  in the transit  you want  to

maintain the heat loss to a minimum you want to keep the heat loss to a minimum. So,

how do you do that,  you put insulation on top of the pipe top of that tube.  So, this

insulation the pipe and the insulation they are may be 2 or 3 different types of insulation,

one is an insulation which is thermally which is going to protect heat loss which is going

to minimize heat lost and in order to protect the insulation you may have another outer

cover.

So, as the heat travels from the inside to the outside it is going to experience different

materials  as  it  travels,  and  it  is  going  to  also  see  materials  of  different  thermal

conductivity.  And  as  it  travels  it  will  see  that  the  heat  transfer  area  will  keep  on



changing. So, under such circumstances what you are going to get is the picture that I

have drawn where you have a composite wall where at the in the inside you have some

convection coefficient.  And at the outside you have a different convection coefficient

which is probably provided by the ambient air which flows over the over the lagged pipe.

So, what would happen to such a case is in is depicted over here and I am simply going

to write what is the form of the final equation going to be.
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 So,  the  radial  flow  of  heat  is  going  to  be  due  to  the  temperature  difference,  the

temperature difference inside minus temperature difference outside. 

So, these are the 3 conduction resistance through the material A B and C, I also have a

convection which is taking place over here. So, what is the convection the convective

heat transfer will be 

1 1

1 1

1
2

r

T T
q

r Lh

 
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This comes from Newton’s law of cooling which simply says that 

 1 1 1 1 12rq hA T h r L T T    

So, from here I have written it in the form of temperature difference by some sort of a

resistance. So, this is the expression for convective heat transfer resistance in the case of

radial systems. So, this is must be added to this overall resistance. Hence,
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So, I think it  is  clear to you now is that  what happens in this  case where you have

multiple walls radial  walls one after the other of different thermal  conductivities,  the



inside is exposed to a convection environment the outside is also exposed to another

convection  environment  with  2  different  temperatures  and  2  different  heat  transfer

coefficients.

So,  the  heat  flow  which  has  to  remain  constant  in  order  to  maintain  equation  of

conservation of energy is the overall temperature difference which is  1 2T T   by the

sum of all resistances and by that I mean by the sum of all resistances is the convection

resistance on the inside, all the possible conduction resistances that the heat flow is going

to face. So, if there are 3 walls there is going to be 3 different conduction resistances and

when it reaches the outer edge of the outer wall it experiences a convection once again.

And from Newton’s law of cooling we have seen how we can express the heat flow as

temperature difference divided by a resistance and the convective heat transfer resistance

is expressed as 
1

hA
. And the area simply is going to be 2 rL  that is the cross section

that is the inner area of the inner cylinder.

So, you this way you can quite easily write what would be the form of the equation for

radial  flow in systems and as I mentioned they are very common in many industrial

situations. Now what I would do next is something very interesting is normally what we

feel is that, if I am feeling cold I just wear a sweater which is nothing but an insulation

and this reduces the loss of heat from my body to the ambient and I do not feel cold

anymore.

So, in the way the purpose of the sweater or the jacket is to ensure that the heat flow

from my body to the ambient get slowered that is what is, that is what insulations do,

they will use the flow of heat from the hot object to the cold object, but is it ever possible

that by adding an insulation you are making more or higher flow of heat from the hot

object to the cold object.

So, this is counter intuitive, but it may happen and I am going to show how under what

conditions by adding insulations you simply increase the rate of flow of heat through that

insulation. So, that is a very interesting concept it is known as the critical thickness of

insulation.  So, if your thickness of insulation is below a certain limit  then by adding

insulation you increase heat flow, if it is above the critical insulation thickness by adding

insulation what you get is what we commonly expect that the heat flow rate reduces, but



the interesting part is that region in which your sizes are is your size is below that of

critical thickness of insulation so, by adding insulation you are increasing the loss of

heat.

So, you would first mathematically see what needs to happen for you to decide; what is

this critical thickness of insulation. And then we will talk about some of the practical

uses,  practical  situations  in  which you may expect  to  encounter  critical  thickness  of

insulation and it has certain advantages as well and what is the scientific reason for such

thing to happen. So, let us look at the derivation once again. So, next wego to critical

thickness  of  insulation.  Let  us  say  I  have  a  cylinder  and  a  solid  cylinder  and  an

insulation. So, this is ri and let us assume that the temperature here is maintained at Ti,

temperature at  the junction between the solid rod and the insulation.  So, this  is your

insulation and the insulation radius is r0 and on the outside it is exposed to a convection

environment with temperature and heat transfer coefficient as h and T∞.

So, it is a solid rod of radius ri, the junction temperature is at Ti, the insulation radius is r0

and it is exposed to h and T∞. So, as before from here I can write that the heat flow is

simply going to be 
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So, there is nothing new I have simply used this for a system in for this case. So, if this is

q then I am going to see is it possible to mathematically get at which point my heat flow

is going to be maximum. So, if I can do that then I will probably get an idea of what is

the concept of critical thickness of insulation.
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So, starting with this 
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I am going to differentiate this and set this to be equal to 0. So, I am trying to find out is

there a radius r0 where r0 is the insulation thickness which would maximize the flow of

heat which is denoted by q.

2

2

1 1
2 ( )

0

ln
1

i
o o

o o

i

o

L T T
kr hrdq

dr r

r
k r h

 

 
   

  
 
 
 
 
 
 

2

1 1

o o

o

kr hr

k
r

h







 This r0 is the critical thickness of the insulation which would maximize heat flow is

known as the critical insulation thickness.

So, this critical insulation thickness therefore, it tells you that if you have a solid cylinder

and you are putting insulations around it. So, this is your first level of insulation this is a

and then at the next instant you increase the thickness of insulation some more and you

are going to increase the thickness even more as long as your radius of this as you are

adding. So, if this let say this is r0 which is equal to k/h as long as you are below this

value you are less than k0/h your q will increase. So, if r0 is less than k/h, add insulation q

will increase, if r0 is greater than k/h, add insulation and q will decrease.

So, this is the concept of critical insulation thickness. So, there exists thickness when if

you add insulation the heat flow will increase, go beyond that and you add insulation and

the expected things will take place, that is the heat flow will decrease then why it should

happen this can only happen when the thickness is very small.

So,  when the  thickness  is  very  small  by  adding  another  layer  of  insulation  you are

increasing the resistance for flow of heat through that added layer of insulation;  that

means,  you  are  increasing  the  conduction  resistance  by  making  the  layer  thicker;

however, with putting the layer of insulation on the outside you are making more area

available  for  conduction  because  the  area  available  for  conduction  is  simply  2πr

multiplied  by length,  length  is  a  constant.  So,  as  r  increases  your  area  available  for

convection increases. So, with increase in r the conduction resistance will increase ok.

So, the convective heat transfer is helped by adding insulation because of the additional

area conduction heat transfer is going to be reduced by adding the insulation. So, these

are 2 parallel mechanisms which compete with each other and for certain value of r as

we have been previously equal to k/h the result is you get the maximum heat transfer.

So, if you are below this value of k/h, increase the insulation thickness, increase the area

available for convection and that more than offsets the additional conduction resistance

that you put in the system that is what the concept of critical insulation thickness is. So,

let us just workout with those since r is equal to k/h, what are the typical values of k/h

and that  would tell  us  something about  when do you expect  this  concept  of  critical

insulation thickness to be when you are going to encounter such concepts.



So, let us write what are the typical values of k and the typical values of h and then we

will know what this is. So, k for insulation material is roughly about 0.0 3 watt per meter

Kelvin and the h the convection over here is mostly going to be the convection in air

which is the order of 10 watt per metre square per Kelvin. So, r c the critical thickness of

insulation is going to be about 3 millimeters.

So, your size has to be less than 3 millimeter for the concept for the occurrence of the

phenomena associated with critical insulation thickness, most of the normal conditions

you do not deal with 3 millimeter thin wire or 3 millimeter thin material. So, for most

cases your r is going to be more than rc and therefore, the concept of critical thickness of

insulation is not relevant.

So, concept of critical thickness you do not encounter the phenomenon associated with

critical insulation thickness since the length scale involved is only about 3 millimeters.

So, what we say is that I increase insulation and I reduce heat transfer, but one example I

can give you which would show the role critical thickness insulation thickness may play

for system.

So, when you think of very thin wires which conduct electricity, the diameter can be less

than 3 millimeters. So, when current passes the heat is generated the ohmic heat is the

joule, joule heat due to joule heating some amount of heat is generated and you want to

dissipate that ok, but at the same time we do not want to live wire without any electrical

insulation put on it.

So, what you do is on the thin wire you put a layer of insulation, but what you get is

something very interesting you not only make it safe for the wire to be safe since you

have put an electrical  insulation this electrical  insulation is going to act as a thermal

insulation  as  well,  because  the  heat  that  is  generated  is  going  to  dissipate  to  the

atmosphere by means of conduction through the electrical insulation and convection to

the outside.

Now, if your radius of the electricity carrying wire is less than 3 millimeter, then you are

enhancing the heat loss from the system by putting an electrical insulation on top of it.

So, you serve 2 purposes, you cover the electrical wire with an insulation and by doing,

so, you are increasing the heat transfer and therefore, the wire itself now can be at a

lower temperature which will probably prolong its life and will be less hazardous.



So, critical thickness of insulation are mostly relevant in very thin electrical wires where

you  put  an  insulation  on  top  of  it,  but  for  most  of  the  practical  systems  since  the

dimension that we deal with are and the dimensions are more than 3 millimeters you do

not get that in most of the applications, but concept wise it is very interesting that it is

difficult to it is counter intuitive when I say that by adding insulation I increase the flow

of heat.

So, that is something which in this class we have seen that it is a peculiar nature of the

phenomena which is a direct result of change in the heat transfer area with radius. As you

go outward the area increases and therefore the heat rate remains the same, but heat flux

will change.

So, this class we have seen what is radial system, what are the resistances associated with

radial systems, what is the peculiar phenomena of critical thickness of insulation. Then in

next class we will very quickly go through what is going to be the equivalent form for

spherical systems, and something which is known as the overall heat transfer coefficient.

And then we will go into systems in which there is going to be generation of heat at

steady state and what would be the form of temperature distribution for systems which

are generating heat on their own.

So, that would be the topic of the next class.
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Lecture - 07
Tutorial Problem on Critical Insulation Thickness

We have already been introduced to the concept of critical insulation thickness. What we

have seen is an interesting result,  which shows that when you add an insulation to a

conductor  which  is  generating  heat.  Normally,  we  would  expect  that  since  we  had

insulation,  the heat flux would decrease,  but in some special  cases we looked at  the

equation of heat transfer between a current carrying conductor that is generating heat,

with an insulation on top of it. And, we have seen that the heat flow from the conductor

to the ambient  can be maximized for a specific  thickness of the insulation,  which is

called the critical insulation thickness. We understood that this anomaly can be explained

by the simultaneous increase in the heat transfer resistance when you apply the heat, as

well as the increase in the surface area available for convection such that the convection

resistance would decrease. So, this increase in the resistance to conduction through the

insulator, and the decrease in resistance by the availability of enlarged surface area for

convective heat transfer, these two we will provide a situation wherein the heat loss from

the system would be a maximum. And the thickness where it takes place is known as a

critical  thickness  of  insulation.  We  have  also  seen  that  in  most  of  the  practical

applications, the concept of critical  thickness of insulation does not appear. Since the

magnitude of critical thickness insulation thickness is less than the order of millimeters.

So,  therefore,  in  practical  systems  we  do  not  come  across  the  critical  thickness  of

insulation,  but  in  some special  cases  for  example,  in  the  case  of  a  current  carrying

conductor this could be of relevance.

We are going to solve problem in the in this class that would clarify our concept more

and so,  it  is  going to  be tutorial  class  based  on the  concept  of  critical  thickness  of

insulation,  but before we move on to that  there is  another  type of resistance to  heat

transfer that we have not discussed so, far. 

When a composite system consisting of two different materials are brought together, you

are  never  going  to  get  a  perfect  contact  in  between  the  two  surfaces,  due  to  the



imperfections present i.e. the roughness; on the surfaces> Hene the two surfaces coming

onto contact with each other will never have a 100 percent point to point contact at every

location. There would exist an area of very low thickness which would be filled by air;

and, this air is going to give rise to a significant increase in the heat transfer resistance.

So, whenever you bring two surfaces together, due to the roughness present in them, the

actual heat transfer resistance is going to be much more than the individual conduction

resistances of the two solid blocks. So, this enhanced heat transfer resistance is called

sometimes called contact resistance.

(Refer Slide Time: 04:27)

If we look at the figure over here what you see is that the two materials A and B and an

at a molecular level they are; obviously, not very not going to be smooth. So, therefore,

there would be some amount of air,  which is going to be entrapped in the spaces in

between these two solid surfaces.

And therefore, if you look at the temperature profile and if T A is the temperature on the

A side of the interface and T B is going to be the temperature on the B side of the

interface. Due to the presence of the low thermal conductivity air in between these two

materials  A and B, there is  going to be temperature  jump across this  interface.  This

temperature jump is expressed in terms of a contact resistance, which as per our previous

understanding any resistance is cause, divided by effect. So, the cause is a temperature



difference T A minus T B, and the same heat travels through this. So, it is going to T A

minus T B by heat flux.

So, when you express the contact resistance in this form; obviously, its units are going to

be Kelvin per Watt. In practical systems most of the times you like to reduce the contact

resistance, some examples are when two surfaces are melted together. So, as to have very

good conductive flow of heat you do not want a thin layer of air existing in between the

two. On the other hand, if you are using material B as in that figure as an insulator then

having an air pocket in between A and B can be beneficial as it provides an additional

resistance. Therefore, depending on your final application the phenomenon of contact

resistance can be helpful,  or you may not want to have a contact  resistance.  So, the

obvious question therefore, is what is going to be the value of contact resistance? The

contact  resistance  values  are  significantly  more  in  many  cases  than  the  conduction

resistances of the two materials, which are brought together.  So, one has to take into

account the contact resistance in most of the real situations. Now, let us say for some

reason you would like to reduce contact resistance. The obvious one is that, you would

like to make the two surfaces that you would like to combine as smooth as possible. So,

one way of reducing conduct resistance would be to make the surface very smooth. The

other option to reduce contact resistance, one may also apply pressure so, as to increase

the area of contact in between the two surfaces. So, the two options to reduce contact

resistances the resistances are to make the surface smooth and to apply pressure at the

contact level. The third option which is also used sometimes is to make sure, that you do

not have air in between the two surfaces which are brought into contact, you rather have

an interstitial fluid that has a higher thermal conductivity than that of air. You may like

to replace the air by a heavy oil with a high thermal conductivity. So, what you do is you

coat the two surfaces initially with a heavy oil with high thermal conductivity and then

bring the two surfaces together.



 (Refer Slide Time: 10:28)

We now move to the problem that we are going to solve in this class on the concept of

critical  thickness of insulation.  So, the first  problem that we are going to do in this,

tutorial problem it is about an electric wire through which 700 Ampere of current flows.

The diameter  of the wire is given as a 5 millimeter,  the resistance per unit  length is

46 10 /m  . The electric wire is in an atmosphere where the temperature is 30  oC ,

and the convective heat transfer coefficient from the outside of the wire to the to the

atmosphere is 25 to Watt per meter square per Kelvin.

The first  part  of  the  problem is  if  the  cable  is  bare  what  is  going to  be its  surface

temperature? So, you just have this cable where this temperature T infinity is 30 degree

centigrade and h is 25 Watt per meter square per Kelvin and you have a current which is

flowing through this.

So, at steady state some amount of current is going to be produced and this amount of

heat must be dissipated to the atmosphere by the convection process. So, in this case

your governing equation heat generated must be equal to the heat that is dissipated by a

convection process.

So, what is the heat generation in the cable? So, heat generation in the cable per unit

length of the cable is simply going to be I square R. So, it is 700 square times R where R

is  the  R  is  the  resistance  per  unit  length,  which  is  provided  in  the  problem  as



46 10 /m  . So, the unit of this should be Watt per meter. So, it is the heart generation

per unit length in the wire because of this much of current flowing through it.

And you would see that this is going to be 294 Watt per meter heat is generated in here,

this generated heat 294 must be equal to the h A by L where A is the area. So, it is pi D L

by L. So, this is the heat to which is lost by convection per unit length T of the surface of

the wire minus T infinity. So, your value of h is known, which is 25 T infinity known so,

you would be able to obtain T S of the bare cable surface to be equal to 778.6 degree

centigrade.

So, that is the answer to the first part which simply gives you what is going to be the

cable surface temperature, when there is nothing on it.

(Refer Slide Time: 14:02)

The part 2 of the problem says that a very thin insulation with a contact resistance of

0.02-meter square Kelvin per Watt is applied on the cable, what are the insulation and

cable surface temperature?

So, this I have the cable and then on top of the cable I have an insulation,  this  is a

cylindrical system I have this insulation. So, this one is my cable and here I have the

insulation. In between the insulation and the cable, and I have some contact resistance.

So, what is required is what is the temperature of the cable surface T S, that we have

obtained  in  our  previous  part  of  the  problem  is  778.6,  and  what  is  the  insulation



temperature,  what  are  the  insulation  and  the  cable  surface  temperature,  what  is  the

insulation temperature; that means, what is going to be T i? So, these two we have to

evaluate now the same amount of current is flowing through the wire but, you have an

insulation on top of it right now.

And,  the  contact  resistance  is  mentioned  here.  So,  we  need  to  consider  the  contact

resistance of 0.02-meter square Kelvin per Watt. So, the question is what is going to be

the value of T S and what is going to be the value of T i.

If you think of the situation as if two reservoirs are connected by a pipe.  So, if you

maintain the level fixed and if you add a pipe in between them there would be definite

flow from this reservoir to this reservoir. Now, what you would like to do is you are

going to construct the pipe in between. So, you add more resistance to flow in between

the two reservoirs. So, the resistance is going to be more, but you would require the same

flow rate. So, with the resistance being higher, you would still like the same flow rate

then the only option available to you is to increase the height difference between the two

reservoirs. So, the potential must be increased if you would like to maintain the same

flow in between these two reservoirs with additional resistances in between them.

The same concept would be applicable here as well; the heat generated is the same. So,

at  steady  state  the  same  heat  has  to  go  through  the  insulation  through  the  contact

resistance first then through the insulation, and then the heat will be convected out to the

atmosphere, but since you have additional resistance the temperature on the wire surface

must be increased in order to have the same flow rate in between the two.

I am going to write the equation for the heat flow as the cause divided by the resistance.

So, the heat flow I square R remains the same the delta T is unknown to me T of the

cable surface minus T infinity. T infinity is known to me, but T of the cable surface is

not known to me divided by the sum of resistances. And, what are the resistances; we

need  to  see  what  resistances  we  need  to  consider  finding  what  is  the  cable  surface

temperature.

So, let us write the governing equation in here; where this q prime which would be the

same as in the previous problem divided by T of S minus T of infinity divided by 1 by h

pi d plus Rtc. So, this Rtc is the contact resistance. And, since everything is expressed in

terms of per unit length.



The  key  point  is  to  note  in  the  problem there  is  a  very  thin  insulation.  Since,  the

insulation thickness is very small I am neglecting the conduction resistance provided by

the insulation. So, that is why I do not have the conduction resistance of the insulation

included in here. What I only have is the convection resistance at  this point and the

contact resistance at this point. So, q double prime would simply be equal to a 294 as it

was  before  this  T  S  is  unknown  to  me,  I  do  not  know  what  is  the  cable  surface

temperature now, but we realize based on a previous discussion that T S has to be much

more than 778, which we have obtained, for the first part of the problem T infinity is 30

and 1 by h is 25 pi times D the diameter of the cable is 5 into 10 to the power minus 3,

and the contact resistance point 0.02 is to be divided by pi times D. When you work out

this T S is going to be 1153 degree Centigrade; So, compared that with the value of T S,

which we have obtained in part 1 which was 778.6 degree Centigrade.

So, as I as I said before, the potential must be increased to have the same flow rate. So,

the temperature of the cable surface will now become 1153 to have the same amount of

heat  flow.  So,  what  is  going  to  be  the  temperature  of  the  insulation  outer  surface,

remember the insulation is very thin.

Since the insulation is very thin you simply can assume that it has the same diameter as

that of the wire. Now, if that is the case you are still going to dissipate 294 Watt per

meter of heat from the insulation. So, 294 Watt per meter must be equal to h times pi D,

where D is the diameter of the insulation, times T of the insulation minus T infinity. 

This D, which is the insulation diameter, since it is very thin it is going it can be taken to

be equal to that of the wire. And once you do that your temperature of the outside of the

insulation surface will remain identical to it is value of part 1 that is 778.6. 

Let us go to the third part of the problem, which is interesting.



(Refer Slide Time: 25:55)

Now, I am going to have a finite thickness of insulation. So, what thickness of insulation,

and now I am specifying the value of the k thermal conductivity as 0.5 Watt per meter

Kelvin will yield the lowest value of the maximum insulation temperature. 

So, what I have now is I have the wire I have the contact resistance in and then I have the

insulation, this insulation thickness is now finite. So, here I have contact resistance, here

I have conduction resistance and here I have convection resistance.

Now, if you look at this figure it is obvious that the maximum insulation temperature no

matter whatever you do is going to be at this point, at the surface where it is connected

with the wire in presence of a contact resistance. So, we are trying to find out what is the

going to be the maximum value of this  contact  resistance.  Let  us call  it  as T prime

maximum value of this temperature. Now, what is going to the minimum value what is

going to be the lowest value of this maximum temperature?

Now, the maximum temperature again I use the concept of 2 reservoirs and somehow

instead of increasing the resistance of the pipe in between the 2 reservoirs and decreasing

the resistance in between the two. So, as I decrease the resistance in between the two in

order to have the same flow rate; now I can reduce the height difference to be provided.

If I increase the resistance I have to provide more as I have explained before, and if by

some means I  can reduce the resistance of the connecting pipe then I  can bring this



down. So, that a less potential difference in this case a less temperature difference has to

be provided.

So, how do you reduce the resistance of heat flow when you have an insulation on a

wire; obviously, the least resistance possible is going to be the at the situation where you

have the critical thickness of insulation. Because based on our previous discussion, we

know that when the critic insulation thickness reaches the critical value the resistance

will  become minimum, and when the resistance is  minimum then I can work with a

lower potential difference or a lower temperature.

So, coming back to the figure over here, when the thickness of the insulation is equal to

the critical insulation thickness, then this T prime is going to have a minimum value. So,

T prime will be minimum when the resistance to heat transfer is going to be minimum

and the resistance to heat transfer is going to be minimum when your Rc critic insulation

thickness is equal to the critical insulation thickness, which by definition is going to be

given by k by h, which is 0.5 Watt per meter Kelvin divided by 25 Watt per meter Kelvin

is equal to 0.0 2 meter.

So, what this tells is if I can provide the insulation thickness to be equal to 0.02 meter if

Rc is less than 0.02 meter then by increasing Rc I decrease the resistance and enhance

the flow of heat. So, when my flow is kept constant and if I keep on increasing Rc till I

reach the point of 0.02 meter, my resistance will keep on decreasing. And as resistance

will keep on decreasing my T prime will keep on decreasing.

So,  if  I  say the T prime which I  know is  the maximum insulation temperature,  this

maximum insulation temperature will have its lowest value, when Rc is equal to 0.02

meter.

So, if Rc is 0.02 meter, then the thickness of the insulation of insulation would be 0.0175

meter. So, when you provide a thickness of insulation of 0.01 75 meter; your temperature

at the inner surface of the insulation is going to be the least of all other situations and let

us find out what is it what it is going to be? So, what I have then is the wire, and then I

have the insulation around it and with a contact resistance in here ok. So, if I the heat

produced per unit length would still be 294, that is the say Watt per meter that the same

heat which is going through it and I am going to write, it between T insulation inside.



So, my 294 would simply be equal to T prime, that is the T insulation inside minus T

infinity  the T infinity  is  still  30 and the R insulation is  going to be 0.02 by 0.0025

divided by 2 pi 0.5 plus 1 by h is 25 pi times 0.04. So, this would be your this should be

the equation and T prime you are going to get as 318.2 degree Centigrade. So, this is

very interesting.

I will quickly go through what I have done here, I have written the equation the heat

transfer  equation  between this  point,  the  insulation,  and the  atmosphere  outside.  So,

between this point and T infinity there are 2 resistances - one is the conduction resistance

and  the  second  is  the  convection  resistance.  Since  I  am  writing  it  from  this  point

outwards, the critical insulation thickness does not come into my equation.

The same amount of heat which is generated will pass through the wire, through the

contact, through the insulation, to the outside. So, this is what the heat is. So, this 294 in

all cases will remain the same. So, what is the, what is the potential it is T insulation

inside minus T infinity what are the resistances one is the conductive resistance of the

insulation and convective resistance at the outside of the insulation.

So, R insulation for a cylindrical system I use the formula and for convective resistance

it simply 1 by h A and since I am expressing it in per unit length it simply going to be 1

by h times pi D 0. This D 0 is now the new D 0, which is based on the critical thickness

of insulation. So, when you work out the number this T prime is going to be 318.2. So,

you can  see is  that  you have achieved  a  significant  reduction  in  the  temperature  by

having an insulation on the wire. So, that is the beauty of critical thickness of insulation

you have added insulation, but what you get because of it is a reduction in temperature.



 

MODULE 6 
 

CONVECTION  
 
6.1 Objectives of convection analysis: 
 
Main purpose of convective heat transfer analysis is to determine: 

- flow field 
- temperature field in fluid 

- heat transfer coefficient, h 
 

How do we determine h ? 
Consider the process of convective cooling, as we pass a cool fluid past a heated wall.  This 
process is described by Newton’s law of Cooling: 

q=h·A·(TS-T) 
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Near any wall a fluid is subject to the no slip condition; that is, there is a stagnant sub layer.  
Since there is no fluid motion in this layer, heat transfer is by conduction in this region.  
Above the sub layer is a region where viscous forces retard fluid motion; in this region some 
convection may occur, but conduction may well predominate.  A careful analysis of this 
region allows us to use our conductive analysis in analyzing heat transfer.  This is the basis of 
our convective theory. 
 
At the wall, the convective heat transfer rate can be expressed as the heat flux. 
 
 
  

 









 TTh
y

T
kq s

y

fconv

0

 
 y 

T(y) 

T  U  
 
 
 

Ts  
 
 



 

 

Hence,  















TT

y

T
k

h
s

y

f

0  

 

But 
0








y
y

T
 depends on the whole fluid motion, and both fluid flow and heat transfer 

equations are needed 
 
 
The expression shows that in order to determine h, we must first determine the temperature 
distribution in the thin fluid layer that coats the wall. 
 
2.2 Classes of Convective Flows 
 

 
 

• extremely diverse 
•  several parameters involved (fluid properties, geometry, nature of flow, phases etc) 
•  systematic approach required 
•  classify flows into certain types, based on certain parameters 
•  identify parameters governing the flow, and group them into meaningful non-

dimensional numbers 
•  need to understand the physics behind each phenomenon 

 
Common classifications: 
A. Based on geometry: 
 External flow / Internal flow 
B. Based on driving mechanism 
 Natural convection / forced convection / mixed convection 
C. Based on number of phases 
 Single phase / multiple phase  
D.  Based on nature of flow 
 Laminar / turbulent 
 
 
 
 
 
 

Forced convection (induced by 
external means) 

Convection 

Free or natural convection 
(induced by buoyancy forces) May occur 

with phase 
change 
(boiling, 
condensation) 
 



 

Table 6.1. Typical values of h (W/m2K) 
 

Free convection  gases: 2 - 25 
    liquid:   50 – 100 
 
Forced convection  gases: 25 - 250 
    liquid:  50 - 20,000 
 
Boiling/Condensation  2500 -100,000 

 
 
 
 
 
 
 
 
 
 
 
 
2.3 How to solve a convection problem ? 

• Solve governing equations along with boundary conditions 
•  Governing equations include 

 1. conservation of mass 
 2. conservation of momentum 
 3. conservation of energy 

•  In Conduction problems, only (3) is needed to be solved. Hence, only few parameters 
are involved 

•  In Convection, all the governing equations need to be solved. 
  large number of parameters can be involved 
 
 
2.4 FORCED CONVECTION: external flow (over flat plate) 
 An internal flow is surrounded by solid boundaries that can restrict the development of its 
boundary layer, for example, a pipe flow.  An external flow, on the other hand, are flows over 
bodies immersed in an unbounded fluid so that the flow boundary layer can grow freely in 
one direction.  Examples include the flows over airfoils, ship hulls, turbine blades, etc 
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• Fluid particle adjacent to the solid surface is at rest 
• These particles act to retard the motion of adjoining layers 
•  boundary layer effect 

 
Inside the boundary layer, we can apply the following conservation principles: 
Momentum balance: inertia forces, pressure gradient, viscous forces, body forces 
Energy balance: convective flux, diffusive flux, heat generation, energy storage 
 
 
 



 

 
 
 
2.5 Forced Convection Correlations  
Since the heat transfer coefficient is a direct function of the temperature gradient next to the 
wall, the physical variables on which it depends can be expressed as follows: 
h=f(fluid properties, velocity field ,geometry,temperature etc.) 
 
As the function is dependent on several parameters, the heat transfer coefficient is usually 
expressed in terms of correlations involving pertinent non-dimensional numbers.  

 
Forced convection: Non-dimensional groupings 
 

• Nusselt No.  Nu = hx / k = (convection heat transfer strength)/                           
(conduction heat transfer strength) 

•  Prandtl No.   Pr = /  = (momentum diffusivity)/ (thermal diffusivity) 
•  Reynolds No. Re = U x /  = (inertia force)/(viscous force) 

Viscous force provides the dampening effect for disturbances in the fluid. If dampening is 
strong enough  laminar flow 
Otherwise, instability  turbulent flow  critical Reynolds number 
 
For forced convection, the heat transfer correlation can be expressed as  

Nu=f (Re, Pr) 
 

 
 
     The convective correlation for laminar flow across a flat plate heated to a constant wall 
temperature is: 
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Nux = 0.323·Rex
½ · Pr1/3 

 
where  

Nux  hx/k 

Rex  (Ux)/ 

Pr  cP/k 

 
Physical Interpretation of Convective Correlation 



 

The Reynolds number is a familiar term to all of us, but we may benefit by considering what 
the ratio tells us.  Recall that the thickness of the dynamic boundary layer, , is proportional 
to the distance along the plate, x.  

Rex  (Ux)/    (U)/  =  (U
2)/( U/) 

The numerator is a mass flow per unit area times a velocity; i.e. a momentum flow per unit 
area.  The denominator is a viscous stress, i.e. a viscous force per unit area.  The ratio 
represents the ratio of momentum to viscous forces.  If viscous forces dominate, the flow will 
be laminar; if momentum dominates, the flow will be turbulent. 

 
Physical Meaning of Prandtl Number 
The Prandtl number was introduced earlier.   

If we multiply and divide the equation by the fluid density, , we obtain: 

Pr  (/)/(k/cP) = / 

The Prandtl number may be seen to be a ratio reflecting the ratio of the rate that viscous 
forces penetrate the material to the rate that thermal energy penetrates the material.  As a 
consequence the Prandtl number is proportional to the rate of growth of the two boundary 
layers: 

/t = Pr1/3 

  
Physical Meaning of Nusselt Number 
The Nusselt number may be physically described as well.   

Nux  hx/k 

If we recall that the thickness of the boundary layer at any point along the surface, , is also a 
function of x then 

Nux  h/k  (/kA)/(1/hA) 

We see that the Nusselt may be viewed as the ratio of the conduction resistance of a material 
to the convection resistance of the same material.   

 

Students, recalling the Biot number, may wish to compare the two so that they may 
distinguish the two.   

Nux  hx/kfluid   Bix  hx/ksolid 

The denominator of the Nusselt number involves the thermal conductivity of the fluid at the 
solid-fluid convective interface; The denominator of the Biot number involves the thermal 
conductivity of the solid at the solid-fluid convective interface. 

 
Local Nature of Convective Correlation 
Consider again the correlation that we have developed for laminar flow over a flat plate at 
constant wall temperature 
 

Nux = 0.323·Rex
½ · Pr1/3 



 

To put this back into dimensional form, we replace the Nusselt number by its equivalent, hx/k 
and take the x/k to the other side: 

h = 0.323·(k/x)Rex
½ · Pr1/3 

Now expand the Reynolds number 

h = 0.323·(k/x)[(Ux)/]½ · Pr1/3 

We proceed to combine the x terms: 

h = 0.323·k[(U)/( x)]½ · Pr1/3 

And see that the convective coefficient decreases with x½. 

 

 

 

 
 

 

 

 

 

 

 
We see that as the boundary layer thickens, the convection coefficient decreases.  Some 
designers will introduce a series of “trip wires”, i.e. devices to disrupt the boundary layer, so 
that the buildup of the insulating layer must begin anew.  This will result in regular 
“thinning” of the boundary layer so that the convection coefficient will remain high. 

 

 
Averaged Correlations 
If one were interested in the total heat loss from a surface, rather than the temperature at a 
point, then they may well want to know something about average convective coefficients.   
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The desire is to find a correlation that provides an overall heat transfer rate: 
 

Q = hLA[Twall-T] =   h T T dA h T T dxx wall x

L

wall        [ ] [ ]0

 
where hx and hL, refer to local and average convective coefficients, respectively. 
 
Compare the second and fourth equations where the area is assumed to be equal to A = (1L): 
 

hLL[Twall-T] =   h T T dxx

L

wall0   [ ]
 

Since the temperature difference is constant, it may be taken outside of the integral and 
cancelled: 
 

hLL=   h dxx

L

0 
 
 
This is a general definition of an integrated average. 
 
Proceed to substitute the correlation for the local coefficient. 
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Take the constant terms from outside the integral, and divide both sides by k. 

hLL/k   =  0  323
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Integrate the right side. 
 

hLL/k =  0 323
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The left side is defined as the average Nusselt number, NuL.  Algebraically rearrange the right 
side. 
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The term in the brackets may be recognized as the Reynolds number, evaluated at the end of 
the convective section.  Finally, 
 



 

3
15.0 PrRe646.0  L  NuL =  

 
This is our average correlation for laminar flow over a flat plate with constant wall 
temperature.   

 
Reynolds Analogy 
In the development of the boundary layer theory, one may notice the strong relationship 
between the dynamic boundary layer and the thermal boundary layer.  Reynold’s noted the 
strong correlation and found that fluid friction and convection coefficient could be related.  
This is known as the Reynolds Analogy. 
 

 
Conclusion from Reynold’s analogy:  Knowing the frictional drag, we know the Nusselt 
Number.  If the drag coefficient is increased, say through increased wall roughness, then the 
convective coefficient will also increase.   
 
Turbulent Flow 
We could develop a turbulent heat transfer correlation in a manner similar to the von Karman 
analysis.  It is probably easier, having developed the Reynolds analogy, to follow that course.  
The local fluid friction factor, Cf, associated with turbulent flow over a flat plate is given as: 
 

Cf = 0.0592/Rex
0.2 

 
Substitute into the Reynolds analogy: 

(0.0592/Rex
0.2)/2 = Nux/RexPr1/3 

 
Rearrange to find 
 

Nux = 0.0296Rex
0.8Pr1/3 

 

Local Correlation 
Turbulent Flow Flat Plate. 

 
 
In order to develop an average correlation, one would evaluate an integral along the plate 
similar to that used in a laminar flow: 

 

 
         Laminar Region                 Turbulent region 
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Note:  The critical Reynolds number for flow over a flat plate is 5105; the critical Reynolds 
number for flow through a round tube is 2000. 

 
The result of the above integration is: 



 

 
Nux = 0.037(Rex

0.8 – 871)Pr1/3 
 

Note:  Fluid properties should be evaluated at the average temperature in the boundary layer, 
i.e. at an average between the wall and free stream temperature.  
 

Tprop = 0.5(Twall+ T) 



 

2.6 Free convection 
Free convection is sometimes defined as a convective process in which fluid motion is caused 
by buoyancy effects.   

 
 

Heated boundary 
layer 

T < Tboundry. layer < Tw 
 
 < boundry. layer  
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Velocity Profiles 

 
Compare the velocity profiles for forced and natural convection shown below: 

      Forced Convection   Free Convection 

U = 0 
 U > 0 

 
 
 
 
 
 
 
 
 
 
Coefficient of Volumetric Expansion 
The thermodynamic property which describes the change in density leading to buoyancy in 
the Coefficient of Volumetric Expansion, . 
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Evaluation of  

 
 Liquids and Solids:   is a thermodynamic property and should be found from 

Property Tables.  Values of  are found for a number of engineering fluids in Tables 
given in Handbooks and Text Books. 

 Ideal Gases:  We may develop a general expression for  for an ideal gas from the 
ideal gas law: 



 

 
P = RT 

 Then, 
 = P/RT 

 
 Differentiating while holding P constant: 
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 Substitute into the definition of  
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Grashof Number 
Because U is always zero, the Reynolds number, [UD]/, is also zero and is no longer 
suitable to describe the flow in the system.  Instead, we introduce a new parameter for natural 
convection, the Grashof Number.  Here we will be most concerned with flow across a vertical 
surface, so that we use the vertical distance, z or L, as the characteristic length. 

 

Gr
g T L


  


 3

2  

 
Just as we have looked at the Reynolds number for a physical meaning, we may consider the 
Grashof number: 

Ideal Gas 
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Free Convection Heat Transfer Correlations 
The standard form for free, or natural, convection correlations will appear much like those for 
forced convection except that (1) the Reynolds number is replaced with a Grashof number 
and (2) the exponent on Prandtl number is not generally 1/3 (The von Karman boundary layer 
analysis from which we developed the 1/3 exponent was for forced convection flows): 
 

Nux = CGrx
mPrn   Local Correlation 

 
   NuL = CGrL

mPrn   Average Correlation 

 
Quite often experimentalists find that the exponent on the Grashof and Prandtl numbers are 
equal so that the general correlations may be written in the form: 



 

 
Nux = C[GrxPr]m   Local Correlation 

 
   NuL = C[GrLPr]m   Average Correlation 

 
This leads to the introduction of the new, dimensionless parameter, the Rayleigh number, Ra: 
 
Rax = GrxPr 

 
RaL = GrLPr 

 
So that the general correlation for free convection becomes: 
 

Nux = CRax
m   Local Correlation 

 
   NuL = CRaL

m   Average Correlation 
 
 

 
Laminar to Turbulent Transition 

 
Just as for forced convection, a boundary layer will form for free convection.  The boundary 
layer, which acts as a thermal resistance, will be relatively thin toward the leading edge of the 
surface resulting in a relatively high convection coefficient.  At a Rayleigh number of about 
109 the flow over a flat plate will become transitional and finally become turbulent.  The 
increased turbulence inside the boundary layer will enhance heat transfer leading to relative 
high convection coefficients because of better mixing. 
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Ra < 109    Laminar flow. [Vertical Flat Plate] 
 
Ra > 109    Turbulent flow. [Vertical Flat Plate] 



 

 
Generally the characteristic length used in the correlation relates to the distance over which 
the boundary layer is allowed to grow.  In the case of a vertical flat plate this will be x or L, 
in the case of a vertical cylinder this will also be x or L; in the case of a horizontal cylinder, 
the length will be d. 

 
Critical Rayleigh Number 

Consider the flow between two surfaces, each at different temperatures.  Under developed 
flow conditions, the interstitial fluid will reach a temperature between the temperatures of the 
two surfaces and will develop free convection flow patterns.  The fluid will be heated by one 
surface, resulting in an upward buoyant flow, and will be cooled by the other, resulting in a 
downward flow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the surfaces are placed closer together, the flow patterns will begin to interfere: 
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Free Convection Inside an 
Enclosure With Complete Flow 

Interference (Channel flow 
limit) 

Free Convection Inside an Enclosure 
(boundary layer limit) 

Note that for enclosures it is 
customary to develop 
correlations which describe the 
overall (both heated and cooled 
surfaces) within a single 
correlation. 

Free Convection Inside an 
Enclosure With Partial Flow 

Interference 

 
 



 

 
 
 
In the case of complete flow interference, the upward and downward forces will cancel, 
canceling circulation forces.  This case would be treated as a pure convection problem since 
no bulk transport occurs. 
The transition in enclosures from convection heat transfer to conduction heat transfer occurs 
at what is termed the “Critical Rayleigh Number”.  Note that this terminology is in clear 
contrast to forced convection where the critical Reynolds number refers to the transition from 
laminar to turbulent flow. 

Racrit = 1000  (Enclosures With Horizontal Heat Flow) 

Racrit = 1728  (Enclosures With Vertical Heat Flow) 

The existence of a Critical Rayleigh number suggests that there are now three flow regimes:  
(1) No flow, (2) Laminar Flow and (3) Turbulent Flow.  In all enclosure problems the 
Rayleigh number will be calculated to determine the proper flow regime before a correlation 
is chosen. 
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Lecture - 16
Fundamentals of Convection

We are going to start with another mode of Heat Transfer namely convection, which is

almost omnipresent whenever there is a contact between a solid and a fluid and the solid

temperature and fluid temperature are different. Now, in addition we may have the fluid,

have a velocity with which it flows over the solid. So, in that case the heat transfer, the

major heat transfer, the maximum amount of heat transfer is going to take place through

convection. So, convection requires the presence of a medium and in most of the cases

there would be an imposed flow of the fluid over the solid. 

So, convection is characterized by the presence of a moving fluid stream, in contact with

a solid. In some special cases, there maybe this motion of the fluid can be induced by a

density difference by a, by a buoyant force without the presence of an external agency

that drives the fluid over the solid surface, which is known as natural convection or free

convection. So, an object which is or a hot object which is placed in, let us say water, it

is going to lose its heat by convection and unless there is a flow imposed flow of the

water stream. Then it is going to be natural or free convection, where the liquid near the

solid, its temperature will increase, its density will decrease and due to the buoyant force

that hot liquid will rise up along the solid and to be replaced by cold water from the

surrounding. 

So, a natural current would therefore, set in which is known as natural convection. So,

we  will  treat  natural  convection  separately  towards  the  end  of  our  discussion  on

convective heat transfer. But right now we are going to mostly concentrate on situations

in  which  there  is  an  imposed  motion  of  the  fluid  in  contact  with  the  solid,  the

applications of convective heat transfer or the occurrence of convective heat transfer is

everywhere in industrial processes. So, wherever you have to heat up a fluid which is

entering a reactor or you would like to cool a stream of liquid before you discharge it to

somewhere, it requires the exchange of heat in between two fluid streams. It is also very



important to ensure that the chemical plant is going to operate at its highest efficiency, if

you can regenerate some of the heat which would otherwise be lost. 

So, convection plays an important role in how you can effectively design an equipment,

which is going to have the maximum amount of convective heat transfer between a solid

and  the  fluid  or  between  two  fluids  streams  separated  by  a  solid  barrier.  These

considerations play an integral role in evaluating, in determining the efficiency of the

process. So, the heat exchangers that we would again consider towards, on in this course

the heat exchangers, the design operating principle of heat exchangers they rely heavily

on convective heat transfer. 

So, it is important that we understand and learn convection, but in order to have a formal

mechanism to study convective heat transfer one has to start with the simplest possible

case. Where, we have a solid plate which is at a higher temperature in relative to the fluid

which, with which it is in contact. And as I said we are going to concentrate mostly on

forced convective heat transfer; that means, the fluid which is in contact with the fluid

with the solid is moving with a certain velocity. 

Now whenever a fluid comes in contact with a solid which is stationary, then there is

going to be a change in the hydrodynamic pattern of the fluid which is flowing over it.

So,  we  will  discuss  that  and  the  concept  of  boundary  layers  would  be  relevant  in

describing the convective heat transfer, that is expected out of the solid plate, out of the

flat solid plate. So, we have chosen flat solid plate because it is the simplest possible

geometry that you can think of. Any change any curvature in the solid with which the

liquid  is  in  contact  will  give  rise  to  additional  complexity,  which  is  slightly  more

complex. So, our starting point would be, we would like to see how the heat transfer

from a solid plate would take place when it is in contact with water. Let us say the fluid

is water, which is very common which we see almost every day. 

So,  what  is  going  to  happen  to  it?  So,  we  start  with  the  fundamental  concepts  of

boundary layer, some of you I think most of you already are aware of the concept of

boundary layer, when we considered the momentum transfer part of it. 



(Refer Slide Time: 05:49)

So, let us say this is a solid, which we have, I have said it is a temperature of Ts and this

stream of fluid is approaching the solid with a temperature of T∞ and let us assume that

Ts is greater than T∞. So, the fluid is going to come in contact with the solid, extract heat

by the convection process from the solid and as a result of which the temperature of the

solid, temperature of the liquid in the vicinity of the solid will rise. 

So, this increase in the temperature of the fluid very close to the solid plate is something

that we need to model in order to get an idea of what is the heat transfer coefficient. It

was the principle equation, the relation that we are going to follow, that we would we are

going  to  use  extensively  in  describing  convective  heat  transfer  is  Newton’s  law  of

cooling, which simply tells us the amount of heat, which is lost from the solid in this

case, is can be written as q hA T  , where h is the convective heat transfer coefficient,

A is the area in contact and T  is the temperature difference between the solid and that

of the liquid, which is at a point far from the solid. 

So, when I look at this one, this the amount of heat lost from the solid would simply be

equal to hA T , where T  is defined as sT T  and if there is a mechanism, if, let us say

there is a heater which maintains, which maintains the temperature of this, of the solid at

constant at Ts then Ts is a constant the temperature with which the liquid is coming in

contact or approaching the solid that is also a constant. So, T  is simply going to be a

constant and if T  is a constant the area which is in contact with the fluid that is also a



constant. So, essentially the heat q that is there is lost from the solid is going to be a

function of h. 

So, how can we manipulate h, the convective heat transfer coefficient or how can we

evaluate the convective heat transfer coefficient that becomes the study of convective

heat transfer. So, how do I relate h with other parameters, now what are the parameters

on which h would depend on. So, if you think heuristically, let us see the fluid if it is

moving at a higher velocity, all of us realize that when you are outside and a cold wind

blows on a winter day, you feel more cold as compared to the case where the air velocity

has significantly reduced. 

So, the temperature in both cases will remain the same; however, the velocity will be

able to extract, because of the velocity the cold air would be able to extract more energy

from your body and thereby you would feel cooler. So, h, the convective heat transfer

coefficient  is  going  to  be  a  strong  function  of  velocity,  convective  heat  transfer

coefficient would also depend on the thermo physical properties of the fluid which is

flowing over the solid. 

So, what are the thermo physical properties on which it would depend on, since we talk

about flow, the two properties which come to our mind automatically, one is what is its

viscosity, that is an important that will play an important role in what is going to be its

density. So, ρ and μ would come into any expression of h, specially when we concentrate

only on the momentum transfer part of it; that means, only fluid flow part of it. 

Now, this heat is being taken up by the fluid by as sensible heat. So, the temperature of

the fluid in contact with the solid will start to rise and whenever you are going to have an

increase in temperature of the fluid, the capacity that heat, the thermal capacity of the

fluid must be taken into account. And the one of the parameters, one of the properties

which define the thermal capacity of the fluid in terms of extracting heat from the solid

has to be Cp which is the specific heat. 

So, Cp is going to play a major role and how is heat going to transfer between the solid

and the liquid. So, the molecules of the fluid which are flowing over the solid, when they

come in contact with the solid due to the no slip condition. Which I am sure you are

aware  of  from your  fluid  mechanics  study;  that  means,  the  molecules  of  the  fluid,

molecules of the moving fluid, which are in contact with the solid they do not move so,



they become static. So, there would be a decrease in velocity as we approach the solid

and on the solid  the velocity  of the fluid would be equal to 0,  which is  the no slip

condition. 

So, at the interface, at the solid liquid interface there would be solid in one side and static

molecules of liquid on the other side. So, if I draw it, if this is my solid part of it, if this is

the solid and this is the liquid. Then even if the liquid is flowing some the molecules of

the liquid, which are in contact of with the solid due to no slip condition, they have a 0

velocity. Now, when they have a 0 velocity, so the heat is going to get transferred from

the solid to this static liquid molecules by conduction,  because, if  you remember the

conduction is prevalent when there is no motion of the molecules in contact. 

So, the mechanism by which heat gets transferred from the solid to the liquid molecules,

solid  to  the  static  liquid  molecules  is  by  conduction,  but  the  molecules  out  of  this,

molecules beyond this static layer they have a velocity. As they have a velocity now, the

heat transfer between two liquid molecules one which is static and one which is moving

the heat transfer here is going to be by convection. So, conduction and convection both

will exist in order to have convective heat transfer from the solid to the liquid. 

So, we understand that an important part here is that you can never have convection

without  conduction.  So, you have to  have conduction  through the layer,  through the

static layer of the fluid molecules which are clinging to the side of the solid and thereby

having gaining heat by from the solid by conduction. On the other hand, the other side

they are exposed to mobile liquid molecules and these, the interaction between the static

liquid and the mobile liquid the heat transfer is going to be by convection. So, when we

say  that  a  convection  from  the  solid  takes  place,  we  need  to  understand  that  the

convection  is  going  to  be  preceded  by  conduction  so  the  layer  of  the  immobile

molecules. So, we can never have convection without conduction. 

So, let us now concentrate on what is going to happen to the liquid or to the fluid which

is coming in contact with the solid. So, the molecules which are over here, there going to

get heated and, but the molecule at this point they do not know that a hot plate exists. So,

as I move to some more distance, the molecules at a slightly higher depth if this I call as

my depth, at a slightly higher depth would know that there is a hot plate which exists.

And the extent of the influence of the solid plate would propagate more and more into



the liquid as I move in the direction, in the x direction. So, this is my x direction and this

is my y direction. So, for small values of x, the effect of the plate in terms of a change in

temperature is going to be limited to a point very close to the surface, as I move further

with x the depth the penetration of the temperature front, will be more and more into the

liquid. 

So, if I approximately join them together, I am going to get a layer which more or less

demarcates  the  range  where  you  would  expect  a  change  in  temperature.  So,  the

temperature over here is simply going to be T∞, the temperature over here is Ts. So, in

between this point and this point there is going to be sharp change in temperature from

T∞ to Ts and if you go beyond this, beyond this point the temperature everywhere is

going to be equal to T∞. So, the temperature profile probably would look something like

this, vertical because T∞ is not a function of y for the region beyond this imaginary layer

and here T the temperature is going to be a function of both x and y. So, inside this layer,

I would write it clearly again T is a function both of x and y. 

So, further you are in terms of x, the temperature is going to be more further you go

away from the solid, the temperature will reduce. So, therefore, t is a function both of x

and y, but in here T∞ is not a function of either x or y. So, this line imaginary, line which

demarcates the change in temperature field and a constant temperature field due to the

effect  of  convective  heat  transfer  from  a  solid  to  a  flowing  fluid  is  known  as  the

boundary  layer,  thermal  boundary  layer.  You are  aware  of  what  is  a  hydrodynamic

boundary layer, which is defined in the same way so if I, just to recap some of these fluid

mechanics  part  of  it  which is  going to  be required for our  study of  convective  heat

transfer. If this is my plate, where I have flow, which let us say it is the velocity is V∞

then there would be an imaginary layer like this there, would be a layer like this in which

the velocity this is my x and this is y. 

So, in here the velocity is going to be a function of both x and y, out here the velocity

this is a x component of velocity Vx is going to be a constant and for a flat plate this

should be equal to V∞. So, for a so this layer which is in here, the velocity varies from 0

due to  no slip  condition  at  the solid  it  increases  asymptotically  and then becomes a

constant.  So, this is a Vx over here which is a constant,  but in here the velocity is a

function of both x and y. So, all the effects of convective or flow is confined within this



layer and most of these layers are, if these layers which are called boundary layers, why

they called boundary layers because they demarcate between two different types of flow.

When  we  considered  the  flow  over  a  flat  plate,  whose  temperature  is  equal  to  the

temperature  of  the  fluid,  no  heat  transfer  is  taking  place,  but  the  only  thing  that  is

happening is that due to no slip condition, on the solid the velocity is 0. And as you

move away from the solid the effect of the solid will be felt lesser and lesser as you

move away from the solid and after a certain point, the velocity or the moving fluid will

not realize that there exists a stagnant solid plate below it. 

So, the layer up to which the effect of the solid is filled by the moving fluid is known as

the  hydrodynamic  boundary  layer  and  of  course,  the  motion  of  the  fluid  molecules

slipping past one another near the solid plate, the property of relevance is; obviously,

viscosity.  So,  the viscosity  is  the one which transfers  the presence,  the effect  of the

presence of the plate into greater depths of the fluid. So, viscosity in ρ they play a very

important role in defining what is the hydrodynamic boundary layer thickness, which are

going to, which are generally very small of the order of a few millimeters for normal

sized plates. 

So,  within  this  few millimeters,  the  effect  of  viscosity  is  important,  outside  of  this

boundary layer the viscous effects are unimportant and the entire flow can be treated as

inviscid flow. A flow in which the viscosity can be assumed to be equal to 0 because

there is no momentum transfer in a direction perpendicular to the flow and therefore, it is

inviscid in nature. However, inside the thin layer close to the solid surface the effect of

viscosity cannot be neglected. 

So, we have viscous flow inside the boundary layer, hydrodynamic boundary layer and

inviscid  flow  outside  of  the  boundary  layer.  Now,  from  your  fluid  mechanics  you

probably also remember that in an inviscid flow, can be explained by Euler’s equation.

In Euler’s equation is the one which is the simplified form of Navier stokes equation,

which Euler’s equation is for inviscid fluid. Where viscosity can be set equal to 0 in

Navier stokes equation, in order to obtain the Euler’s equation and we get Bernoulli’s

equation starting from Euler’s equation, but that is a separate story. 

So, inside the boundary, inside the hydrodynamic boundary layer the flow is viscous. So,

the viscous transport of momentum as well as the convective transport of momentum,



both will have to taken, will have to be taken into account. Similar to hydrodynamic

boundary layer what we are discussing right now is thermal boundary layer. So, thermal

boundary layer is the region in which the temperature changes, temperature varies with y

from a value equal to Ts, all the way to the constant value of T∞. 

Here I have the velocity changing from 0 to V∞, here the temperature changes from Ts

which is the temperature of the substrate to infinity, beyond this point the velocity is

constant, beyond this point the temperature is constant. So, there is a similarity between

the  thermal  boundary  layer,  boundary  layer  and this  is  known as  the  hydrodynamic

boundary layer. So, in most in most of the cases, the thickness of the hydrodynamic

boundary layer which is generally denoted by δ and the thermal boundary layer which is

denoted by δt they are not equal. 

So, in one hand you have δt and over here you have δ. So, this δ the thickness of the

boundary layer; obviously, as you can see from this figure is a function of x, here δt is

also a function of x; however, δ and δt may not be equal.

(Refer Slide Time: 24:08)

So,  we  make  it  situation  in  which,  if  this  is  the  solid  plate;  you  have  the  thermal

boundary layer and you have the hydrodynamic boundary layer. Or in you may have

situations in which the thermal boundary layer would be below and the hydrodynamic

boundary layer would be above. 



So, let us call this is hydrodynamic boundary layer, and this is the thermal boundary

layer so here it is going to be TBL and HBL on for some very special cases you discuss

them in detail later on these two would coincide. So, when these two coincide here I

have for hydrodynamic boundary layer, this is delta thermal boundary layer thickness at

any location is given by is denoted by δt. So, in this case δ would be equal to δt. So,

when we would see that this special condition only appears when Prandtl number which

is defined as 
Cp

Pr
k


  =1 

Now, why would that happen, let us let us expand this a little bit more, Prandtl number is

/

/

Cp
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k k Cp

   

 
  

I can write it as dividing both the numerator and the denominator by the ρ, the density I

can write it as /k Cp  and if you remember your fluid mechanics this /   is known as

the kinematic viscosity and this /k Cp  which you have just seen is denoted by α. So,

this is known as the momentum diffusivity and this α is known as the thermal diffusivity.

Both have units both α and ν have units of m2/s,  which is the same as the diffusion

coefficient that you probably have heard of which is the diffusion coefficient of A and B

this also have units of m2/s. 

So,  another  important  observation  which  would  not  probably  with  related  to  heat

transfer, but you are going to come across this many times is that conceptually α, ν and

DAB are all similar and all will have units of m2/s. In one case this refers to momentum

transfer, this refers to heat transfer and this refers to mass transfer. So, conceptually there

is  not  much  difference  between  these  three  transport  processes,  heat,  mass  and

momentum transfer and they in there at some point of time would be the base on which

the unified treatment of heat, mass and momentum transfer can be undertaken. That you

are going to study in a separate course which is transport phenomena that looks at the

fundamentals of all these transport processes. 

But coming back to convective heat transfer or coming back to the nature, to the growth

of these boundary layers, what we see is that the value of Prandtl number which is / 

they simply tell us about momentum diffusivity and thermal diffusivity. So, the growth



of these layers they are strongly dependent the TBL, the Thermal Boundary Layer would

strongly depend on the thermal diffusivity. How fast, how easily the temperature front is

getting into the moving fluid and the for the case of hydrodynamic boundary layer its α

which is defining, how the hydrodynamic boundary layer is growing. 

So,  when numerically  these  two are  equal  both  the  HBL and the  TBL would  grow

together, would grow at the same rate therefore, the value of Prandtl number equal to

unity which appears only when momentum diffusivity and thermal diffusivity are equal.

This is a special case which would let us take the value of the thickness of these two

layers to be identical. So, this is the background which we are going to, which we are

going to utilize in deriving some of the equations of convective heat transfer. 

So,  we  understand  here  that  conduction  and  convection  both  exist  for  the  case  of

convection,  but  conduction  can  be  a  standalone  process,  which  do  not  require  the

presence of convection. Conduction mostly, conduction when it happens inside a solid

that is no question of any movement of the molecules, no net movement of the molecules

and therefore, conduction is specified by 0 velocity or no velocity. Whereas, convection

you have to have a velocity which could be imposed, that occurs in most of the industrial

processes or it could be without the imposition of a velocity it is there because of the

presence of a velocity. 

Because,  in  the  presence  of  a  temperature  gradient  which  induces  a  difference  in

buoyancy a change in the value of the density are so therefore, have buoyant force would

make the fluid in contact with the solid, hot solid rise and that is what is known as a

natural convection. 

Before we take this, slightly further and do of mathematical treatment of convection.

Next another concept which I would like to introduce, a new I will follow it up with the

in  the  next  class  with  further  details.  In  many  of  these  cases  the  equations  can  be

obtained, the governing equations can be obtained if you assume a small control volume

through the faces of which heat mass and momentum can enter the control volume. So, I

can  assume  in  a,  in  a  free  space  a  cuboid  of  side,  size  x y z   .  So,  through  so;

obviously, this cuboid will have 6 faces and truth is 6 faces the, let us say the mass is

allowed to come and heat is allowed to come as well. So, I am going to first write or



draw this cuboid and try to identify mentally, what are the process, what are the ways by

which, let us see heat can enter into this control volume. 

So, I am going to write the physics of flow into the control volume and the associated

energy which comes into the control volume. So, this difference equation when I write

and when I divide all sides by x y z    what I do is I convert the difference equation,

which is a statement of the physics of the situation to a differential  equation.  In this

differential  equation  can  then  be  integrated  with  appropriate  boundary  conditions  to

obtain either the velocity profile or the temperature profile. 

So,  this  kind  of  approach  where  a  small  cuboid  is  assumed  in  the  flow  space,  the

difference equation written convert it to differential equation and then solved is known as

the shell momentum balance or shell heat balance or in the case of mass transfer it is

known as the shell species balance. So, the first thing that one should do in order to

derive all these equations or all these concepts is defined as a shell.  So, let us try to

define a shell and identify through the faces what is going to come in terms of energy

into the space, into the space that I have defined over here. 

(Refer Slide Time: 33:20)

So, let us just draw, so this is my coordinate system and I am going to draw the shell. So,

this is the one which I have, let us say this is my x, this is my y and this is the z. So, as

you can clearly see this is x , this is z  and this is y , this is the space which I have

defined and I have flow of a liquid in all possible directions which approach in this. 



So, this point is, the coordinate of this point is x, y and z and coordinate of this point is

x x  ,  y y   and  z z  .  So,  I  have  6  faces  in  this  case,  the  face  which  is

perpendicular to the x direction; that means, this face, which you do not see, this face is

known as the x face. So, the x face is perpendicular to the x direction, its area as you can

clearly see the area is going to be y z  . Similarly, y face will have area, y face is the

face below the bottom face which is this one, the y face will have area x z  and this z

face which is the one which is see over here, this z face will have an area of x y  . 

So, what we would assume is that the fluid is going to enter through x, y. So, the fluid

enters through x, y and z faces and leaves through faces at  x x  ,  y y  and z z  .

So, this is what the fundamentals of shell moment, shell heat balance is. So, you have

this shell of dimensions x y z   which is situated in a flow field and the flow is going to

come, it would enter through all these faces in a when and leave through the other sides.

That means, they what when it can come through x it leaves at x x  , y and y y  , z

and z z  . 

It is a three dimensional flow so, there is going to be components of velocity as xV , yV

and  zV  and the temperature is going to be a function of x, y and z as well. Whenever

liquid enters into the control volume, it will carry with it some amount of energy and

when it leaves it is going to carry some amount of energy. So, some amount of energy is

coming into the control volume, some of it is going to live in the control volume, the

coming to that of the energy to the control volume is through three faces, it is going to

leave through the other three faces. 

So, there could be as a result of this process a net amount of energy, which is added to

the control volume this net amount of energy could also reduce. So, in that case I am

going to simply use a minus sign, but let us assume that some amount of energy is added

to the control volume, now this control volume can also do some work or some work

maybe done on it. 

So, that is possible since we are considering, taking into considerations all possibilities

we should also consider that the control volume can do some work or some work can be

done on it. So, the net amount of heat which you add and the amount of work that this



system does or it is being done on the system, this sum total of this must be equal to the

time rate of change of internal and kinetic energy of the system. 

So, if you recall first law of thermodynamics what I have stated. So, far in terms of the

control volume is nothing, but the statement of first law of thermodynamics for an open

system. Where all effects are considered, the energy which comes with the flowing fluid,

it will have a thermal energy component; it will also come with a velocity. So, there will

be some kinetic energy component and an internal energy component, kinetic energy is

because of the velocity of the fluid stream, internal energy is because of its temperature,

whatever be its temperature. 

So, we would like to write all those terms containing kinetic energy and internal energy

through all the 6 faces, they are going to give me the net heat being net energy, both

kinetic and internal being added to the control volume. We will also have to take into

account whether the control volume does any work or some work is being done on the

control volume, that is going to be another component of the difference equation. As a

result of this the total energy content, internal and kinetic, total energy content of the

control volume will change with time.

So, we are not restricting our self to steady state, we also allow the energy and the total

energy can change which time inside the control volume. So, when I express in that

terms, what I am stating is nothing, but the first law of thermodynamics, where all effects

are considered and from this difference, difference equation when we think about, when

we take all the appropriate terms into account for example, let us see work done on the

system or by the system. So, what are the forces against to which what can be done, one

obviously, is a body force for example, a gravity which acts on the entire volume of the

control volume.

So, gravity is a body force which for against which the control volume may do some

work, the other forces are not everywhere, not acting everywhere on the control volume,

but acting on the surfaces, so surface forces will also have to be taken into account. So,

what are the, for most what is the most common surface force is pressure, so the pressure

force is acting on the control volume. So, these are two examples of the forces which can

operate on the control volume, one is a body force the other is a surface force. So, we

have  to  identify  the  most  common body forces  and  surface  forces  plugged into  the



equation that I have just described, and then try to see mathematically; what is the end

result of it. 

So, the end result of it should give us an equation which is an energy equation, which

should have embedded into it both conduction, convection the work done and as a result

of which the time rate of change of temperature of the control volume. So, that would

give  me  the  complete  energy  equation,  which  I  will  be  able  to  use  for  a  specific

application,  cancelling  the terms  which are not  relevant  for  the problem that  we are

dealing with and get to a simplified form of equation. The same way we have obtained

the equation of conduction in the case of conductive heat transfer. So, I would stop here

today, but what I have discussed is about conduction,  the thermal boundary layer the

velocity boundary layer and the concept of shell heat balance. 

And  while  describing  shell  heat  balance  I  have  use  the  concept  of  first  law  of

thermodynamics for an open system and the shell that I have defined of size  x y z  

which is fixed in space and through all the faces the fluid is coming with some internal

energy and some kinetic energy. And some work is being done on the system or by the

system and the work is being done either against gravity, which is the example of a body

force or some pressure forces which are acting only on the surfaces of the define control

volume. When I sum all of them together what I get is the total, the time rate of change

of internal and kinetic energy is of the control volume of the shell that we have to just

define. 

So, we will write down the terms in the next class and see how beautifully this concept

would result in a compact differential equation for temperature and this for the spatial;

that  means,  x,  y,  z  variation  of  temperature,  as  well  as  the  temporal  variation  of

temperature, that means how the temperature changes with time. So, my aim is to obtain

an expression of t as a function of x, y, z and time that is what I would like to get out of

this energy equation. And once I have that, then I am going to transform this equation for

the case of convective heat transfer to see whether or not I get a compact expression for

h,  the  convective  heat  transfer  coefficient  the  engineering  parameter  of  interest  that

engineers would like to find out before designing any equipments.

So, starting from fundamentals through some, little bit of mathematics I would like to get

a differential equation, from the differential equation and expression of each which can



be used by practicing engineers. So, that is the whole chain which I would like to cover

in the, in some of the future classes. 
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Lecture - 17
Equations of Change for Non-isothermal Systems

I would like to introduce a concept which we started discussing in the last class, which is

called the shell balance. Now, this shell balance can be of momentum, it can be of energy

it can also be of a species. When we do a shell momentum balance we get a governing

equation that describes the change in velocity as a function of x, y, z and time. When we

write the shell  heat balance we should get what is known as the equation of energy.

Similarly, if I write it for a species, which is let us say reacting with another species in a

flowing fluid field, then we would get the species conservation equation which is going

to be very important in mass transfer. Let us try to concentrate on how we can write a

shell heat balance, the trick is to define a shell of let us say some size del x, del y, del z

which is fixed in space. 

So, a cuboid shape of size del x, del y, del z we have 6 faces: one is the x face which is

perpendicular  to  the  x  direction,  one  is  the  y  face  which  is  perpendicular  to  the  y

direction and the other is going to be that z face which is perpendicular to the z direction.

Each of these faces will have areas associated with them and through these areas heat

energy can come into the control volume. Because of which the internal energy of the

box would change. When we talk about energy will we are not going to talk only about

the internal  energy, we also must consider the kinetic  energy. So, a fluid may come

through  the  x  face  with  certain  velocity  and  therefore,  certain  kinetic  energy,  at  a

temperature which is different form the temperature of the fluid contained in the box.

Therefore,  the entering fluid will have some internal energy and some kinetic energy

associated with it.  So, it  will enter the x face and will leave the x plus delta x face,

similarly it would come through y, leave at y plus delta y, come at z and leave at z plus

delta z. 

 



(Refer Slide Time: 05:44)

Let us once again go through the equation of change for a non-isothermal system, here I

have drawn this box which is del x, del z and del y. These are the x, y and z directions

and the x face which is this one is perpendicular to the x direction and therefore, its area

is y z  . Similarly, the y face which is perpendicular to the y direction would should

have area of x z  ; and the z face would have an area of x y  . We are going to now

write what would be the form of the energy equation for a system of size del x, del y, del

z which is which is fixed in space and this is our coordinate system. 

(Refer Slide Time: 07:10)



So, let us see how the equation of change would look like for a non-isothermal system.

When there is a flow, some amount of energy comes with the flow and when I talk about

energy I speak about both the internal  and the kinetic  energy. So, some internal  and

kinetic energy can come into this volume element by convection and it is going to go out

again by convection, from the x plus del x, y plus del y and z plus delta z faces. Let us

say I have a temperature difference, which exists in the x direction; then obviously, I am

going to have some flow of heat through conduction through this x face. So, a difference

in temperature either in x or in y or in z even if the fluid is still,  would give rise to

conductive heat transfer. So, if there is a temperature difference, there is going to be a

conductive heat transfer. I have combined the terms together to write it in the form of net

rate of heat addition to the volume element by conduction. So, this takes care of all the

heat that comes to the system by conduction or by convection. However, there is one

missing term that I should consider at this point, that is the rate of work done by the

system on the surrounding; and hence, the total energy of the system should reduce, and

that is why we have a minus sign. Had this  been a case of work being done on the

system, then this sign should be positive. So, what I have written over here is nothing,

but the first law of thermodynamics, for an x and since I am allowing fluid to enter and

leave, this must be for an open system. 

Now, from this generalized energy equation one should be able to deduct the commonly

available equation for kinetic energy of a system. And therefore, what you would left out

with is  the energy equation where we are only considering  internal  energy which is

manifested by a change in temperature. 
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So, first of all let us see what is going to be the rate of accumulation of internal energy

and kinetic energy within the system, which is defined as del x del y del z. So, this must

be 21

2
U v

t
 

  
 

  
 where, U is the internal energy per unit mass and v is the velocity.

This internal energy per unit mass, here I have multiplied it with rho. So, this becomes

internal energy per unit volume. So, if I would like to find out what is the total rate of

accumulation of internal and kinetic energy within x, y, z this must be multiplied by del

x del y del z, which makes it the rate of change of internal energy for a system, whose

dimensions are del x del y and del z. As long as my U is defined as internal energy per

unit mass, rho is the density. 

Therefore,     U x y z
t


 
   

 
   would  simply  give  us  the  rate  of  accumulation  of

internal energy within del x del y del z and similarly the same logic will also be applied

to 21

2
v . The next one is, I am going to write would be the convection of internal energy

and kinetic energy into the element. 
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In this figure, some amount of let us, this is my x face, which has an area of y z  , and

some amount of fluid is going to enter through this x face. Let us say, this velocity with

which  it  comes  into  the  control  volume is  xv .  So,  when  you multiply  21

2
v ,  with

  xy z v    it  is going to give you the kinetic energy per unit time. So, together this

whole term gives is evaluated at x on this face. So, it comes in through the x face and

goes out through the face at x plus del x. 

So, the entire thing is going to be at   21

2 xy z U v v 
 

   
 

   , all evaluated at x plus

delta x. So, the amount of energy, internal and kinetic energy in due to convection. So,

when I consider the net energy balance due to convection, the equation would be:

2 21 1
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So, this is what the expression for in minus out by convection through the x face would

look like. Now, I can write the same thing for the y face, the only thing which will be

different here is the y face has an area equal to x z   and since we are talking about y



then the xv  must be replaced with yv and instead of evaluating it at x, it is going to be

evaluated at y and y plus delta y, similarly for z face this area is going to be x y  , xv  is

to be replaced by zv  and everything else will remain same. 

So, in total to consider the convective flow of internal and kinetic energy into the volume

element, del x del y del z, I will have 6 terms. Two terms each for x, y, and z face would

give me total of 6 terms that would signify what is the total amount of heat which comes

into the system by convection. 

(Refer Slide Time: 23:01)

As I have explained before, we must think about net rate of heat addition by conduction,

I would not say heat here, energy because I also have the kinetic energy to take care of,

net rate of energy input by conduction. And here I am going to express it in terms of the

component of heat flux in the x direction. 

So,  xq  is  the  heat  in  per  unit  area  per  unit  time.  So,  I  must  multiply  it  with  the

appropriate area since it is x face this must be equal to y z  . So, this denotes the heat

that comes to the control volume through the x face and the one that goes out through the

x plus  delta  x  face.  So,  these  two terms  together  one  at  x  and one  at  x  plus  del  x

multiplied  by  y z  ,  together  they  tell  us  about  the  net  rate  of  heat  addition  by

conduction through the x face.



Similarly, I am going to have the y face which will have x z  , the area and the heat

flux is are going to be yq , at y minus yq  at y plus delta y and for the z face it is going to

be x y  times zq , evaluated at z minus zq  at z plus delta z. So, these 6 terms again, 6

terms for each of the faces would tell me about the net energy input by conduction and so

I have taken care of the convection and I have taken care of conduction. So, what is left

is work done by the system on the surrounding. 

(Refer Slide Time: 25:41)

Now, work done as we all know it simply, it can be against volumetric forces, volumetric

forces that which are acting on the entire volume of the volume element. The common

example would be gravity and the second one is against surface forces, surface forces

which could be against pressure, which could be against viscous forces. So, these two are

again the common examples of surface forces. 

Now, I am not interested in work done, because work done is, force times distance in the

direction of the force. So, what would be rate of work done that is the time rate of work

done, it would be force times distance by time. So, the work done is given by:

   x x y y z zx y z v g v g v g       .  We know that,  distance by time;  obviously,  would

give you the velocity. So, this is what you are going to get for the rate of work done. So,

rate of work done would simply be expressed as force times velocity. So, let us quickly



write the expression for the force against gravity forces, so rate of doing work against

gravity would simply be equal to minus since, it is against work is done against gravity. 

So, v x times g x velocity and this is acceleration due to gravity plus v y g y plus v z g z.

So, when you, when you see this equation you would be able to see that it is the force in

the x direction which is v x, del x del y del z times rho and this is this is multiplied by g

x. So, this totally gives you the rho del x del y del z times g x is the force, because this is

mass, this is mass per unit volume this is volume, and this is the acceleration. So, this

gives you the force and force multiplied by the velocity in the appropriate direction. So,

v x, v y, and v z would give you the rate of work, rate of doing work against gravity. 

So, again what is going to be the form for against pressure, it should be the area on

which let u say the x face del z times P v x, evaluated at x plus delta x minus P v x at x.

So, this is one term, plus del x del z, p v y at y plus del y minus p v y at y, this is going to

be the second term plus del x del y, p v z times z plus del z minus p v z. Look at these

terms one more time and see what the mean, pressure is force per unit area. Whatever be

the pressure at x plus del x is multiplied by the appropriate area which is del y del z, to

give to give us the force in the x direction acting on the control volume, acting on the

volume element at x plus del x and we understand that the rate of work done is force

times velocity. So, the pressure-work is given by: 

           x x y y z z

z z zx x x y y y

y z Pv Pv x z Pv Pv x y Pv Pv
 

    
              

         

 

So, these 6 terms together would give us the work done against the pressure forces by the

volume element  del  x del y del  z.  What  is  remaining here is  the work done against

viscous forces, now work done against viscous forces this I am going to neglect for the

time-being because work done against viscous forces is something like solid friction. So,

what happens when you work against friction forces, you are pulling an object over a

rough surface.  So,  you have  to  overcome the  frictional  forces  exerted  by  the  rough

surface, as a result of which there is going to be heat generation in it and any work that

you do that  in  order  to  make that  block move over  a  rough surface,  is  going to  be

converted into heat and it will change the energy of the of the system. Similarly, when

fluid flows specially at high speed through a small duct, there is going to be tremendous

velocity gradient which is present. 



So, let us say I have a jet which very thin, and the fluid is coming at a very high velocity.

So, the velocity is large and if the velocity is large and the gap is small, then the velocity

gradient  would be very large,  and we understand that  the viscous force is  related to

velocity  gradient.  The shear  stress  is  mu times  velocity  gradient.  So,  if  the  velocity

gradient is large or if the viscosity is large, in that case you will have a strong force that

you need to overcome in order to make the fluid flow through that thin conduit at a very

high velocity. If that happens then you do substantial work against the viscous forces and

whenever you do that kind of work against viscous forces the temperature will increase.

And that increase in temperature which is obtained at the expense of work done by the

system must be considered for any form of energy equation. 

However,  this  is  only  relevant  in  some  special  situations,  we  do  not  get  the  heat

generation  due to  viscosity  in  many of  the  practical  problems.  As you would see it

requires high velocity gradient and very high viscosity. So, what are the places in which

they become relevant, when a rocket reentered earth’s atmosphere its velocity is very

large, the atmosphere is still, but the rocket is coming down with a very high velocity.

So, near the boundary layer, formed close to the rocket, the velocity changes from that of

the  rocket  which  is  very  large,  to  velocity  equal  to  0  which  is  the  velocity  of  the

atmosphere. So, this thinness of the boundary layer and the very high speed of the rocket

at reentry would ensure that the frictional heat generated is tremendous. And that is why

you would see that the rocket comes almost like a red-hot object and there has to be

special protective arrangements to ensure the safety of the astronauts inside the rocket. 

So, that is an extreme example, in some cases viscous polymer is extruded by making it

flow through a very thin gap, if that is the case then the viscosity is high, the velocity is

large as you would like to have higher throughput of the polymer when you are making a

sheet out of it. So, the velocity combined with the high viscosity of the polymer ensures

that  you  cannot  neglect  viscous  dissipation.  However,  we  will  neglect  viscous  heat

dissipation, wherever the viscous heat dissipation is irrelevant; but I will tell you that

how to incorporate  additional  terms into  the energy equation  which would take  into

account the viscous heat generation. 

So, if you look at your textbook and look at the full form of the energy equation, you

would see there are a bunch of terms which have which are multiplied with mu. So, the

easiest way to identify which term of your energy equation in your text relates to be,



relate to viscous heat generation, is to look for terms containing mu. If in your problem

the viscous heat generation is negligible drop the entire set of terms containing mu and

what you would have is the energy equation that we are going to use for most of the

realistic applications. So, since those terms are complicated, I am dropping them for the

time being, but making you aware that in some special situations you need to add them to

ensure that your energy equation is complete. 
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Free Convection

In previous classes, we have seen the relations and correlations for external flow as well

as for internal flow. In all these cases there was an imposed pressure gradient specially

for internal flow which drives the fluid through the tube. There are several locations in

which  there  is  no  externally  imposed  flow on  the  system  even  though  a  flow  will

automatically start because of a difference in buoyancy. So, this buoyancy difference

driven flow will lead to convection as well which is known as the free convection or

natural convection. This is a very important part of the overall transport process around

many structures, buildings and surfaces. So, whenever there is an absence of a forcing

velocity, the heat transfer under that situation which is caused by density difference due

to temperature is termed as free convection or natural convection. The applications of

natural convection as I mentioned are many: they appear in atmospheric process to semi

semiconductor chips, when a semiconductor chip is cooled in absence of a fan which

forces the fluid to move over it, the way it loses heat is natural convection. So, from a

very small length scale to a very large length scale, we will have natural convective heat

transfer under many situations. It is therefore important to know the physics of natural

convection, what are the relations and correlations which are to be used in order to obtain

the heat flux or the heat transfer coefficient in natural convection. And just to have an

idea  of the order  of magnitude  value  of the heat  transfer  coefficient  that  one would

encounter in natural convection process.

So, let us look at the development of the governing equation and see what additional

information we can obtain by simply writing the equation of energy, equation of motion,

and equation of continuity and see what the similarity parameter would be, or which

dimensionless group would automatically appear in those equations. It is to be noted that

any relation of heat transfer coefficient will therefore, be a function of Nusselt number

besides  Reynolds  and Prandtl.  We would  observe that  some other  number  may also

appear for the case of natural convection and the point to start this analysis is by using

the fundamental equations - the energy, the motion, and the continuity equation.



(Refer Slide Time: 03:18)

So, let us look at the figure over here which shows that I have a plate which is in contact

with air. The plate temperature is TS and the temperature of the surrounding air at a point

far from the plate is T  and the corresponding density of air is  . The gravity is acting

vertically downwards; and we will assume that the temperature of the plate is more than

the temperature  of the air.  Therefore,  the temperature  of the fluid near the wall  will

increase, its density will decrease, and it starts to rise. As it rises, this fluid is going to be

replaced by the cooler fluid from beneath. So, you have a cooler fluid from over here and

then the process would start once again. So, the hot fluid near the wall rises towards the

top  to  be  replaced  by  cold  fluid  from the  ambient.  This  is  what  is  known  as  free

convection and the free convection is classified based on whether the flow is bounded by

a surface or if it is a free boundary flow. 

So, let us write the equation; let us assume that the flow due to the density difference in

forced flow inside the boundary layer is laminar. But however, it is also possible that will

have turbulence at some point at a larger value of x. So, this is x = 0, y = 0; that is the

origin that we have and the velocity in the x-direction is u, the velocity in the y direction

is v and we understand that the flow outside of this thin layer is essentially stationary.

So, if I draw the velocity profile of the air which is rising close to the plate, it is going to

be 0 at x = 0 and y = 0; due to the no-slip and no penetration boundary conditions. As we

progress further, we would observe that the profile would be somewhat parabolic with

the maximum velocity occurring somewhere in between. We understand that v is going



to be very small, i.e. the velocity in the y-direction is going to be very small as compare

to the velocity in the x direction. Therefore, the x momentum equation is simply going to

be 
2

2

1
y

u u P u
u v g
x y x y




   
    

   
. Note that I have neglected the viscous transport of

momentum in the x direction as the velocity gradient in the x direction is very small as

compared to the velocity gradient in the y direction due to the thinness of the region

where this flow is taking place. However, u is large as compared to v, but  
u

y




is very

large as compared to
u

x




.

So, none of the terms on the left-hand side could be neglected. However, we also know

that if I write the y component of the equation of motion, since there is no force in the y

direction, the gravity is acting downwards. So, y momentum equation would give you

0
P

x





. The pressure gradient at any point inside the boundary layer must be equal to

the pressure gradient in the region outside the boundary layer. So, the pressure gradient

at these 2 points would be identical since 0
P

x





and P does not vary in the y direction.

If that is the case, then in this region, u is 0. There is no velocity in the x direction, no

velocity in the y direction. The effect of gravity would be there, but the velocity variation

with y is also not going to be present.

So,  the  equation  that  I  have  written  over  here,  the  x  component  of  the  momentum

equation; if I write it for a region outside of the thermal boundary layer or outside of this

layer, then all these terms would be 0 except 
1

0y

P
g

x


  


. So, that is the form of the

equation  if  I  write  it  outside  of  the  layer.  Therefore,  y

P
g

x



 


; and  the  rho  is

essentially  .



So, if I put this equation back in here, then the left-hand side will remain the same, in the

right-hand side, these 2 terms can therefore be clubbed together to give the equation as

 
2

2

ygu u u
u v
x y y

  
 

  
   

  
.
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Now, this is the term which is the force body force acting on the fluid under natural

convection  condition.  To  express  this  in  a  more  convenient  form,  we  introduce  a

thermodynamic  quantity  which  is  the  volumetric  thermal  expansion  coefficient.  The

volumetric thermal expansion coefficient which is termed as  ,  and  1

PT





 




;

so,   can also be approximated as 
1

T T

 






 
  

 
. Therefore, this    can be written

as   T T  .  Therefore,  the  x-direction  momentum  equation  can  be  written  as:

 
2

2y

u u u
u v g T T
x y y

 

  
   

  
.  So, this  is the equation of motion where we have

introduced a thermodynamic parameter    which is known for most of the gases. The

analysis was undertaken because it is better to express the equation in terms of the delta



T rather than in terms of delta rho by introducing the concept of volumetric  thermal

expansion coefficient. The continuity equation can be written as:  0
u v

x y

 
 

 
; and the

energy equation can be represented as:  
2

2

T T T
u v
x y y


  

 
  

; where    is the thermal

diffusivity.

So, these 3 equations are to be solved simultaneously in order to obtain what is known as

the thermal coefficients for the relations for natural convection. One point I would like to

make here is that, the next step involves non-dimensionalizing the equation. As we have

done before and in order to non-dimensionalize this, we need to define a length scale

which is straight forward. Because, the length scale would most likely be the length of

the plate along which this rise of the liquid is taking place. I also must bring in some

reference  velocity  which  is  yet  to  be  decided.  I  am  simply  going  to  write  the

dimensionless form of the equation without going through the all the steps, what I would

suggest  you  is  to  look at  Incropera  and  Dewitt,  the  textbook  of  this  course  for  the

derivations from the dimensional equation to the dimensionless equation, but those steps

are merely substituting the variables in terms of the dimensionless variables and no new

physical  concepts  are  involved.  So,  we  will  skip  those  steps  and  only  write  the

dimensionless form of the equation which would give us more insight into the natural

convection process. 



(Refer Slide Time: 14:26)

Therefore,  the  dimensionless  form  of  the  equation  is  written  as:

 * * 2 *
* *

* * 2 *2
0

1

Re
y s

L

g T T Lu u u
u v

x y u y

   
  

  
;  where  L  is  the  length  scale,  0u  is  the

velocity difference that is yet to be determined (reference velocity). Just see this equation

and compare this equation mentally. What would we have obtained if this is a case where

there is no temperature gradient present in the system? So, if there is no pressure gradient

present and no temperature gradient present in the system then, this equation of motion

would simply revert to the equation that we already know the first term on the right-hand

side would be 0 since sT T . So, these 2 terms will remain, and this term will remain as

well, and you can clearly see that the similarity parameter. For such a case, as you have

seen countless times before would be the Reynolds number. So, for a situation in which

there  is  no  temperature  difference,  natural  convection  does  not  take  place  and  the

equation of motion will have the known similarity parameter as Reynolds number only.

However, in presence of a temperature difference between the plate and the surrounding

air I have an additional extra term as the first term on the right-hand side of the of the

momentum  equation.  So,  anything  that  I  define  will  not  only  contain  the  similarity

parameter Reynolds number, but it should also contain something which will consist of

contribution from the first term and again the contribution from the first term is nothing

but the contribution from natural convection.



So, let us work a little bit on that term to see if any additional dimensionless terms come

out of the first term on the right-hand side. But in order to do that, if you look at your

class notes once again you have a 2
0u present in the equation. We know that term 0u  is a

velocity that we have not yet defined. So, we need to get rid of this 2
0u  in some way. Let

us multiply both sides of the equation  by  2Re L ,  which is  nothing,  but  the Reynolds

number based on the entire length which would be 
2

0u L



 
 
 

. Therefore, what you would

get is a new dimensionless number which is known as Grashof number, which is denoted

by Gr, and the Grashof number based on the length is defined as:  
  3

2

y sg T T L




. The

Grashof number has the same significance as Reynolds number in forced convection. We

know that for forced convection, the Nusselt number is a function of Reynolds number

and Prandtl number. So, whatever role Reynolds number played in the case of forced

convection, the same role will be played by this Grashof number in the case of natural

convection or free convection. So, the Grashof number can simply be expressed as the

flow due the ratio of 2 forces; the viscous forces in the denominator and the temperature

induced forces in the numerator.

So, the Nusselt number for natural convection should be a function of Reynolds number

a  function  of  Prandtl  number  and  a  function  of  Grashof  number.  So,  unlike  forced

convection,  we will  have an additional  term present in any relation or correlation of

natural convection which is Grashof number. So, let us look at Grashof number in a bit

more detail. 

(Refer Slide Time: 20:20)



In natural convection, additionally, this Grashof number if you look at the definition of

Grashof number it is nothing but the ratio of buoyancy forces to the viscous force. So, if

2
1

Re
L

L

Gr
 , the combined effects of natural and forced convection are to be considered. On

the  other  hand,  if   2
1

Re
L

L

Gr
  then  free  convection  can  be  neglected.  Conversely,  if

2
1

Re
L

L

Gr
 then the forced convection effect can be neglected. For such a case, the Nusselt

number  would  simply  be  a  function  of  Grashof  number  and  Prandtl  number.  Many

relations and correlations are available for free convections; I will simply give you some

examples of those relations. For example, the average value of Nusselt number in natural

convection can be written as:   
1

44
Pr

3 4
L

L

GrhL
Nu g

k
 

   
 

. This g(Pr) is a function of

Prandtl number the values of which are provided in the text. These correlations are quite

complicated, and of course I do not want you to memorize and it is not also possible to

remember all these relations or correlations, but you should know when to use which

relation. So, in any questions in any exam, I am going to provide all these relations to

you, and you must pick the right relation or correlation citing justification and then use it

to solve the problems.



I am going to give you some more examples of these relations; so, some other relations

for  natural  convection  are:  
1

41
4

Pr

0.952 PrxNu Ra  
  

 
;  where,  Ra  is  the  Rayleigh

number, and it is simply Grashof number at x times Prandtl number ( PrxRa Gr ). 

(Refer Slide Time: 25:10)

So, under these situations the turbulence in natural convection is defined when Rayleigh

number at the transition which is Grashof number at the transition times Prandtl number

is about 910 . So, this is the limit for Rayleigh number for the case of turbulent flow. The

most common examples of natural convection is when you have a vertical plate and you

have natural convection taking place from its sides, and the correlation for finding out

what would be the heat transfer coefficient under these conditions are given by Churchill

and  Chu  where  the  Nusselt  number  relation  is  provided  as:

2

1
6

8
9 27

16

0.387
0.852

0.492
1

Pr

L
L

Ra
Nu

 
 
 
 

  
            

. So, this is an impossible correlation to remember

or to do anything with this. So, what the researchers have done over the years is they



have huge number of experimental results under various conditions, and they start with

some logic that Nusselt  number has to be a function of Grashof number and Prandtl

number or you can express it as a function of Rayleigh number and Prandtl number, and

the dependence of the Nusselt number on the Rayleigh number or the Prandtl number

these  are  obtained  by  fitting  the  experimental  results  with  a  suitable  mathematical

function, giving rise to these empirical expressions.

So, there are several such relations available in the text. I am giving you some of the

examples to make sure you use the right correlation to find out the value of the heat

transfer  coefficient.  All  these  correlations  are  valid  for  certain  ranges  of  Rayleigh

number. For example,  turbulent flow and laminar flow the cross over takes place for

Rayleigh number of about  910 and for certain ranges of Prandtl number. So, use those

relations, but use them judiciously for the situation that you have  at hand in order to

obtain the value of h. But, the important thing, one of the reassuring things, is that no

matter  which correlation you use,  the value of h is  insensitive to some extent  to the

correlation  that  you  have  used.  So,  the value  of  heat  transfer  coefficient  in  natural

convection is very small. For the case of air, it is going to be between 1 to 10 Watt per

meter square per Kelvin. Since the value of heat transfer coefficient is small and it does

not vary too much based on which correlation you use,  your results  are going to be

approximately correct. But always consult your text or your hand book and choose the

right relation for such cases. 

So, the relations that I have shown you so far are valid only when natural conviction is

predominant.  But there would be situations in which both the natural convection and

forced  convection  would  be  present.  So,  what  would  be  the  expression  for  such

situations? I know separately how Nusselt number depends on Reynolds and Prandtl, for

the case of forced convection and how Nusselt number depends on Rayleigh number and

Prandtl number for the case of free convection. But, if both are significant, how do I get

the overall Nusselt number for such a situation? So, that is what I am going to write next

the case where both are important.
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That means, you have both, free and force convection, and both are important. Then the

effective Nusselt number is Nusselt number based on forced convection plus or minus

Nusselt number based on pure natural convection. So, this plus is for the assisting and

transverse flow whereas minus is for opposing flow. So, the Nusselt number for when

both are present is simply an algebraic sum to the power some coefficient n where this n

is generally taken to be equal to 3, and this is only a first approximation to find out what

is the combined heat transfer coefficient  when both are present. So, if we have both

acting in the same direction, then it is going to be plus. If you have natural convection

and force convection in the opposite direction, then you are going to have a negative

sign.

The case when there is a constant surface heat flux is a very common situation which one

would encounter in the case of natural convection where the Nusselt number is denoted

by a relationship:  
1

50.6 Prx xNu Gr  and this is valid for 5 1110 Pr 10xGr  , while the

flow  is  laminar.   For  the  case  of  turbulent  flow,  the  relationship  is  going  to  be:

 
0.72

0.568 Prx xNu Gr , and this relation is valid for 13 162 10 Pr 10xGr   .  My idea is

not to give you too many correlations because these correlations are availability in you

text and you can look it up at any point of time. What I would like you to take away from

this class is that, I need you to understand why natural convection is taking place. And

since it is taking place, the pressure gradient force flow is provided by a difference in



density caused by a difference in temperature. So, the body force term will have to be

modified by considering the difference in density. The difference in density is related to

difference in temperature. So, it is more logical to bring in a thermodynamic quantity

beta which is the coefficient of volumetric expansion and write the equation of motion in

a  clear  fashion  which  will  highlight  the  role  of  temperature  difference  in  natural

convective flow along a flat plate.

So, this additional contribution from the buoyancy difference induced flow is clubbed in

terms of a new dimensionless number which is known as Grashof number. So, if it is

purely natural convection, my Nusselt number would be a function of Grashof number

and Prandtl number. If it is a forced convection only then Nusselt number is a function of

Reynolds number and Prandtl  number.  If both are present,  then the effective Nusselt

number is expressed as an algebraic sum of Nusselt number due to forced convection and

Nusselt number due to free convection with an exponent n present in the relation. So, the

values of n are generally taken to be equal to 3 and there are a multitude of relations

which are available for Nusselt number under various conditions. So, the important thing

to know here is that the value of the natural convective heat transfer coefficient is quite

small as compared to its counterparts in forced convection. So, if we have a system in

which forced convection is taking place inside a tube and free convection is taking place

outside of the tube. The rate determining step, which is the one that offers maximum

resistance to heat transfer, is going to be provided by the natural convection. The natural

convective heat transfer coefficient or the inverse of that, because inverse of heat transfer

coefficient is a resistance to heat transfer. Therefore, an idea of the natural convective

heat transfer coefficient is very important in many of the calculations that you would

encounter while designing the heat exchange equipment. So, identifying the flow pattern,

identifying  the  role  of  natural  convection  in  that  process,  and  choosing  the  right

correlation for that specific situation are all very important. The first two I have covered

extensively in this class but choosing the relation or which relation is to be used and

what  would  be  the  form of  that  equation,  are  all  available  in  the  text.  So,  I  would

encourage you to look at the text and see for what condition which correlation is to be

used.
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Radiation - Fundamental Concepts

We  will start  Radiation for in this class and follow it towards the end of this course

which would complete our study on Heat Transfer. So, far we have dealt with two modes

of  heat  transfer,  conduction  and convection  both  of  which  require  the presence  of  a

medium.  However,  radiation  is  the one as you are all  aware of does not  require  the

presence of a medium. So, radiation plays a major role in many of the process industries

and in significantly varied applications as we know of. So, we would concentrate on

radiation, the radiator the radiation flux, the intensity and flux, the radiative properties.

How do we characterize the subject based on its radiative properties? What is an ideal

surface as far as radiation is concerned? We are talking about black body over here. And

then there is any surface resistance to radiation that by which you can express, since,

radiation depends on temperature and on the nature of the surface. So, we will see what

is  Stefan Boltzmann law that;  obviously,  you know about.  But,  is  there  any surface

resistance to radiation since all these surfaces and non ideal, they are not black bodies.

So, can some resistance be ascribed for exchange of radiative heat transfer between the

surface and its surroundings.

So, what is the surface potential? What is the surface resistance? What is the potential

just outside of the surface when we consider the surface resistance? So, the body as a

whole if I consider it as a black body we will have some sort of radiative potential. But,

since its surface is not acting like a black body. So, there will be some resistance. So, just

outside the surface we can think of another potential with two potentials connected by

resistance as in a circuit,  electrical  circuit where the resistance in here is going to be

surface resistance to radiation. So, those concepts we would also discuss in this part of

the course.

Also  two  bodies  can  exchange  radiation  with  in  between  them,  that  they  can  also

exchange radiation with itself and they can they can also exchange radiative heat transfer

with the surroundings. So, if the palm of my hand, if the palms of my hand are two

surfaces



are two different temperatures. And if I press them like this, there would be radiative

heat  exchange  in  between  these  two  surfaces.  Not  only  that  they  are  also  going  to

exchange heat with the walls of this room through the space in between this. So, if I

bring them close to each other, the amount of radiative heat which they are going to

exchange with the surrounding will keep on decreasing.

So, in ideally, if they are touching each other then all the heat which is released by one is

going to be intercepted by the other. But, if I separate them out together then it is going

to be, then the heat that gets transferred from one the fraction of the heat which gets

transferred  from one reaching two that  fraction  will  decrease.  So,  the  how much of

surface  1 is  visible  from surface  2  would  definitely  depend on what  is  the  distance

between the two or if we talk in mathematical terms what is the solid angle subtended by

that would by this by surface 2 onto 1. So, we will see the concept of solid angle as well

in this course.

And then let us say we have 3 surfaces which form an enclosure. So, you can think of it

as a triangle, where the 3 sides are exchanging radiative heat with one another ok. So,

part of the heat released by 2 is going to go to 1, part going to 3 and maybe it may so,

happen that part of the heat released by 1 is going to be absorbed by 1 itself. So, if it is a

curved surface like this then the part of the energy which is emitted by 1 is going to

incident on 1 itself right. So, that is possible, but if it is a flat surface then none of the

radiative energy which leaves 1 is going to come back to 1.

So, the nature of the surface, the shape of the surface will also play a role; let us say we

have 3 flat surfaces which are forming a triangle.  And  these 3 sides are at 3 different

temperatures and there is going to be radiative exchange of heat in between them ok.

What is going to be the net heat to be supplied or extracted to each of these triangles,

each  of  these  sides  of  the  triangle  so,  as  to  maintain  thermal  equilibrium?  These

informations will be extremely useful for the efficient designs of furnaces, because as

you know furnaces operate at a very high temperature.

So, how much of heat you need to supply to the furnace to maintain the temperature of

one of the surfaces at a desired level; you need this kind of calculations. So, as you can

see we are always bringing in electrical analogy for radiative calculations specially when

we talk about the potential, the resistance and the heat flow is something which is similar

to



that of current. So, there has to be a network method, see if you remember your electrical

technology this star delta connections the problems on star and delta connections which

we have done in electrical technology, we are going to do similar calculations for the

case of radiation as well which would give, which would allow us to effectively design a

furnace.

So, that is more or less what we would like to cover in this part of the course. But, let us

start with radiation first and radiation is the energy emitted by an object which does not

require the presence of a medium and all surfaces above absolute 0 would emit radiation.

They  will  also  receive  radiation  so,  there  is  going to  be  a  process  of  emission  and

absorption that are going on that will be going on.

The concept of radiation can be explained by 2 theories, the first one is Maxwell’s theory

and the second one is Planck’s theory. So, Maxwell’s theory of electromagnetism can be

used to express some of the radiation phenomena where Max Planck’s theory is also

applicable for the case of radiative heat exchange. So, apart from the properties of the

surface we should also be aware from the very class first class itself that the radiation can

be  explained  either  in  Maxwell  either  using  Maxwell’s  theory  of  electromagnetic,

Maxwell’s  electromagnetic  theory  where  the  radiation  is  treated  as  electromagnetic

waves.
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So, radiations are treated as electromagnetic waves in Maxwell’s electromagnetic theory

wherein max Planck’s theory the radiation is treated as photons or in other words they

are Quantas, quanta of energy. So, both we will find its use, both concepts have been

utilised. So, the results from the electromagnetic theory are used to predict the radiative

properties of materials, while the results from Planck’s concept has been used to predict

the magnitude of radiation energy emitted by a body at a given radiation.

Now, radiations can happen over a large wavelength range and view on one side we have

the gamma rays and one on the other side we have radio waves. So, whenever an object

is  emitting  radiation  the  chances  are  that  it  is  going  to  emit  radiation  over  all  the

wavelengths. So, radiation is spectral in nature by spectral I mean that there is going to

be a wavelength dependence of radiation and not all the energy coming out of a surface

is going to be equally spaced over all wavelengths. So, there will be certain wavelengths,

there will be a wavelength range in which most of the energy would be concentrated and

it  may  not  be  presented  other  wavelengths.  So,  the  spectral  nature  of  radiation  is

extremely important and we will have to take that into account.

So, when you think of this spectrum of radiation and the way it is divided into different

different sections. So, there is a specific wavelength range where we can see that is the

visible wavelength range. There is a specific wavelength range we in which most of the

radiative heat transfer is taking place. And you have an infrared range and you have the

gamma rays range where you have energy associated with radiation. But, the thermal

energy is concentrated somewhere in the middle and that is going to be our zone of

interest for most of the topics that we would cover over here.

So, let  me draw what kind of waves, what kind of radiation we would get and as a

function of the wavelength and see whether we can identify and demarcate the region in

which the radiation is going to be important. So, if I draw that profile over here.
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What it looks like then is. So, this is the spectrum of electromagnetic radiation. So, any

wavelength,  any radiation where the corresponding wavelength,  where the associated

wavelength is greater than 102, these are in the microwave region. Anything which is

smaller than 10-4 these are gamma rays. In between 10-4 and roughly somewhere slightly

more than 10-2 these are the x rays. So, between 10-1 to about 102, this is the region which

is of most importance to this part of the course which is thermal radiation; so, between

10-1 to about 102.

And this region this one is the visible range where you have the red on one side and you

have the violet on the other side. So, this is more or less the visible spectra the more or

less the spectrum that you would get in radiation, but between 0.1 and 100 this is the

range in which most of the thermal radiation is going to be concentrated. And this would

be the region which we would study in this part of the course. So, as well as I was telling

you the spectral nature and the so called specular nature. So, this is monochromatic light,

monochromatic radiation emission and if I plot it as a function of λ which is wavelength.

There is going to be a variation like this some arbitrary variation. And since, it depends

on wavelength this is called spectral distribution.



What it essentially tells is that you are getting a continuous non uniform distribution of

monochromatic components, by monochromatic I mean single wavelength components

and the magnitude of the radiation at any wavelength and the spectral distribution vary

with the nature and temperature of the surface. So, this kind of distributions what you are

getting  out  of  the  surface,  out  of  the  object,  would  depend  on  whatever  be  the

temperature of the object and whatever be the properties of the object.

So, the monochromatic distribution of radiative emission from a surface is a continuous

function of wavelength, but the value of the emission is going to be different at different

wavelengths. So, that is what happens, that is what would happen in most of the real

surfaces. Whereas in some cases your and there is no directional distribution on top of it.

But, if you look at this surface then from a point it is this one will have a directional

distribution which is something different from over here.

So, here the distribution depends only on wavelength, here the distribution depends on

the direction as well ok. So, this is the difference between these two surfaces. So, this is a

spectral  distribution and the spectral  is used to refer to the nature of the dependence

where  it  depends  on  the  wavelength.  And  the  thick  the  wave  nature  of  the  thermal

radiation tells you that this λ which is the wavelength is going to be (c)/ (frequency of

radiation). So, this is the speed of light that is the standard definition speed of light.

The  speed  of  propagation  in  the  medium  and  λ  is  the  wavelength  and  this  is  the

frequency. So, if the medium through which the propagation takes place is vacuum, then

that  c  is  going  to  be  speed  of  light  in  vacuum.  So,  the  dependence  between  the

wavelength and frequency is simply an inverse relationship with a constant which is the

speed of light in vacuum when we are talking about the vacuum. So,  now,  let us talk

about the radiative properties, what are the radiative properties that we have? When a

light is incident on a surface part of it is going to get reflected, part of it is going to be

absorbed and part of it is going to get transmitted.

So, the fraction of the energy which gets reflected as compared to what is the overall

energy incident on it is known as the property is the reflectivity. So, the reflectivity is

defined as the fraction the numerator is going to be the fraction which is



reflected fraction of energy which is reflected and the denominator is the total energy

incident on it. So, the other option, other possibility is that part of the energy which does

not  get  reflected  and  enters  through  the  surface  is  going  to  get  absorbed.  So,  the

absorptivity, the factor absorptivity is defined as the amount of energy which is absorbed

in the material divided by the amount of energy which is incident on it.

Now, let us say that part is reflected; part gets into the system and then goes out of the

system or out of the material after part of it is going to be absorbed. So, what can happen

on incident energy on a surface is one it may get reflected, one it may get absorbed and

the third is it may get transmitted through the surface. So, the three properties which are

defined  to  denote  these  natures  of  the  surface  are  reflectivity,  absorptivity  and

transmissivity. As the name suggests the denominator in all cases would be the amount

of energy incident on the surface.

So, in the case of reflectivity it is a fraction which gets reflected. Absorptivity is the

fraction which gets absorbed and transmissivity is the fraction which gets transmitted.

So, the reflectivity, the absorptivity and transmissivity, transmissivity all are fractions

having a value from 0 to 1. And since the denominator in all cases is the same, the sum

of alpha plus beta plus gamma tau is going to be equal to 1. So, if I define the properties, 

ρ + α + τ = 1
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So,  this  is  the  reflectivity,  this  is  the  absorptivity  and this  is  the  transmissivity;  so,

fraction of fraction which gets reflected, fraction which gets absorbed and fraction which

gets transmitted. So, that is why sum of these 3 would be equal to 1. Now, if I go back

one slide and show you this one here this one is this kind of surfaces where the emission

depends on the direction they are known as specular. So, specular is a surface where

there is a directional dependence of radiation from a surface.

So, wherever there is a directional dependence or directional distribution of energy out of

a surface it is known as specular.  And when there is no such dependence it is called a

diffuse.  A diffuse  is  a  surface  where  the  incident  beam incident  beam of  energy  is

distributed uniformly in all directions. So, apart from these properties of radiation, this

property of the surface is also important. Specular when there is a directional distribution

to the energy emitted  by a surface.  The second type of surface is  diffuse where the

incident beam is distributed uniformly in all directions.

So,  we will  see  what  are  the  examples  and the  special  features  and the  simplifying

situations where assuming a surface specular or assuming a surface as diffuse we will

provide. The other concept that I would like to introduce before I close this class is some

sort of an ideal. Whenever we talk about real surfaces the properties the absorptivity,

reflectivity and the transmissivity there must be



something which can be taken as an ideal surface ok. So, we are going to compare the

performance or the characteristics of a real surface against that of the ideal.

So, such ideal surface is in radiative heat transfer is assumed is termed as the black body.

So, what is a black body? A black body is something it is an idealized concept; a black

body is  something which absorbs everything that  is  incident  on it.  So,  therefore,  the

absorptivity of a black body is equal to 1. On the other hand the second characteristics of

a black body is that at a given temperature no other object emits more energy than that of

a blackbody. So, blackbody emits the emissive power of the black body is maximum

compared  to  all  other  surfaces.  So,  black  body  absorbs  anything  and  it  emits  the

maximum amount of energy.

The concept of black body is extremely important in radiative heat transfer. Because, it

lets you set a standard surface against which the performance of all other surfaces are to

be evaluated. So, let us note down the special nature characteristics of a black body. It is

an idealized surface, idealized concept and the first one is absorbs everything as I said.

The second one is maximum radiation at a given temperature that is the second one and

the third one that black body is a diffuse emitter.  As I said the radiation from a black

body is a function radiation is a function of temperature and wavelength. But it is not a

function of direction.

If you again compare this, what we have done in this case the radiation takes place at all

wavelengths and the amount of radiation is going to be a function of temperature. So, if I

increase the temperature I am going to get a second curve which would show that it is

going to provide higher amount of energy so, emission. So, the radiation emission is

definitely a function of λ it is also a function of temperature. So, common sense tells us

that more the temperature higher is going to be the emission. Apart from that there could

be directional dependence of radiation what we call as specular, where there is the from

the point there is  going to be different  in different directions  it  would emit  different

amounts of energy.

So, ideally the radiation is a function of temperature, it is a function of wavelength and it

is function of direction. But, in for case of a black body if the radiation emission is not a

function of direction,  it  is  a function only of temperature and that  of λ.  So,  when a

surface is not a function of. When the emission from a surface is not a function of the

direction it is



called diffuse emitter. So, in order to be a blackbody these 3 conditions are to be satisfied

that it should observe all incident radiation coming at all possible coming from surfaces

at all possible temperatures and all possible wavelengths.

And at a given temperature it is going to emit the maximum amount of radiation that you

can think of and it  is going to be a diffuse emitter.  So,  examples of there are some

surfaces which closely mimic the behaviour of a black body for example, the closest

approximation  of  a  blackbody.  The  closest  approximation  of  a  black  body  can  be

obtained when you think of a small cavity. So, this is a small cavity which you can think

of it with a very small opening over here. So, any ray which comes inside is going to be

reflected multiple times and the chances of multiple time it is going to reflected and the

chances of its going back outside through the narrow pore is extremely small.

So, what it tells us is it gives us the situation in which any energy which comes inside is

going to be absorbed which it is going to be absorbed multiple times inside the system

and the fraction of energy which may go out is going to be extremely small. So, it obeys

or it confirms to the first approximation of a black body; that means, anything which is

incident on it is going to be absorbed over here. Now, let us think of the surface once

again the chances of the emission that you are going to get out of this is same in all

direction. So, if something leaves through this pore, it can be in any possible direction.

So, therefore, this is one of the closest approximations that you can get of a black body

and let us assume that you have placed an object over here.

In the one which enters is going to reflect multiple times and come to it from all possible

directions right. So, energy is going to be incident on any object placed inside the cavity.

So, therefore, it is going to be a diffuse irradiation of interior surfaces. Since, it is coming

all  surfaces  all  points  on  the  surface.  So,  the  body  placed  inside  the  cavity  will

experience  evaporation  from all  possible  directions.  So,  therefore,  the  black  body is

going to be a diffuse emitter, since it is going to irradiate at the object inside the cavity

equally with equal probability from all directions.

So, normally a cavity is the closest approximation of a black body that one can get. So,

the properties of blackbody, the radiative properties of any real material, how they differ

from that of a black body and what is the closest approximation of a black body we



have discussed that.  But,  what is left  to be said is, what is  the black body radiation

intensity. Is there a formula, is there some way by which we can find out what is the

spectral  and once again spectral  means wavelength  dependance.  What  is  the spectral

radiation intensity of a black body? As we understand it is going to be a function of

temperature, it is going to be a function of wavelength. There it is going to be some other

constants which are going to be involved in that expression.

So, in the next class will see: what is the spectral radiative intensity of a black body and

how this can be connected with the radiation flux from a point source. If I put a point

source of radiation on a given surface, how much of total radiation I am going to get out

of the surface.

So, that is what we will cover in the next class.
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We will discuss more about radiation in this class. In the last class we just introduced you

to radiation, the requirement of not having any medium; that means, a radiation can take

place without any medium being present. The radiative properties of a substrate in terms

of reflectivity, absorptivity and transmittivity and the concept of an ideal body in terms

of radiation, which is termed as a black body which can emit; whose emission at a given

temperature is the maximum, it is going to absorb everything that falls into it. And, it is a

diffuse emitter; that means, the emission coming out of a black body does not have any

directional dependence.

We have also introduced the concept spectral; that means, anything which depends on the

wavelength at which we are considering at which the emission is taking place. So, all

these quantities,  all  these properties namely the reflectivity,  the transmittivity and the

absorptivity are spectral in nature; that means, the absorption of a radiation is going to be

different  at  different  values  of  the  wavelength.  So,  the  spectral  nature  of  radiation

concept of a black body and that the radiation can be treated in 2 ways, the one is based

on  the  wave  nature  and  the  second  is  based  on  the  quantum  concept  these  were

introduced  in  the  last  class.  In  this  class  we  are  going  to  know  more  about  two

fundamental properties of a black body.

That means, first is going to be: what is the black body radiation intensity, when a black

body is at a given temperature. So, how much of energy per unit area per unit wavelength

and per unit solid angle we will introduced the concept later on that this black body is

emitting. So, that is the spectral black body radiation intensity.

And secondly, we will see what is going to be the total emissive power of a black body at

a given temperature; that means, if a black body having unit area is placed at the center

of a hemisphere, how much would be the total energy emitted by this black body of unit

area at a given length and at a given temperature. So, these are the two main concepts

which would cover in today’s class.
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So, let us first start with black body radiation intensity in which is going to so, we denote

that  as  I  the  intensity,  b  stands  for  the  black  body,  lambda  denotes  the  wavelength

dependence and of course, it is going to be different and different temperature. So, the

temperature has to be specified while we are discussing about the black body radiation

intensity. And in this case, we are going to rely on the Planck’s distribution. So, what is

black body radiation intensity? It is defined as the magnitude of radiation energy which

is emitted by a black body at an absolute temperature T at any wavelength lambda in any

given direction.

So, it gives you the idea the quantum of radiation energy which is emitted at in any given

direction  and  at  a  specific  wavelength.  So,  the  radiation  energy  of  course,  would

therefore,  depend  on  the  temperature,  it  is  going  to  depend  on  the  lambda,  the

wavelength and it will have a directional property.

So, using Planck’s distribution the magnitude of the black body radiation intensity can be

expressed  for  the  case  of  vacuum.  So,  the  magnitude  of  the  black  body  radiation

intensity, spectral black body radiation intensity at a given temperature into vacuum is

expressed  in  this  form.  Where  h  is  the  well-known Planck’s  constant.  So,  h  is  the

Planck’s constant, the value of which is available in any text book I am not writing it

over here; c is the, if c is the velocity of light and the k the k that you see over here is the

Boltzmann constant. So, that is also the value of which is also available in your text.



So,  if  you  if  you think  about  what  would  be  the  units  of  the  black  body  radiation

intensity from the definition we understand that it is going to be energy per unit area per

unit  wavelength  per  unit  solid  angle  because,  we  are  talking  about  in  any  given

directions. So, I will tell you what this solid angle is all about, but the definition got the

units of the black body radiation intensity therefore, can be expressed in terms of energy

which is Watts, area, wavelength is customarily expressed in terms of micron. So, that is

why the micron is there in the denominator and the solid angle is the unit of solid angle is

steradian. So, steradian comes into the denominator.

So, the units of the black body radiation intensity I b lambda T, the spectral blackbody

radiation intensity is Watt per meter square per unit per micron per steradian. So, what is

a solid angle let us since we are going to use the concept of solid angle.
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You are probably aware of this solid angle, but I will still do this one more time. So, let

us see this is the over here therefore, it is sort of a cone which is my area of interest let us

say the area is dA. The distance from the center from this point which I denote it as O let

it be r. So, this is the solid angle subtended by the area dA at the center and this dA is

normal perpendicular to the direction.

So, therefore, this dA perpendicular to the dotted line and the solid angle is defined as the

area times r square. Had this area been at an angle with the line which comes out of this

origin the specifying the direction then the projection of this area perpendicular to the



direction has to be provided. That means, dA has to be substituted by dA cos theta if this

is the area through which the radiation is passing through. So, therefore, the projection of

this area on to this side has to be substituted for dA. So, dA is therefore, perpendicular to

the direction and this has to be kept in mind.

So, if you extend this so, for a hemisphere this if the from the center, from its center the

solid angle is simply going to be equal to twice pi. And when you consider as full sphere

this is simply going to be equal to 4 pi. So, these are obvious; that means, what is going

to be, what is going to be this value of the solid angle for the case of a hemisphere and

for the case of a sphere. So, as before if let us say as I was telling you if this is the origin

and I have some area which is not perpendicular to which is not perpendicular to this and

therefore, let us say the area vector makes an angle of 45 degree with this direction, with

this direction.

And let us say if this d area, the area is about 4-centimeter square. So, this is the area

vector which is always perpendicular to this area. So, therefore, using the definition d

omega the solid angle as dA by r square and this dA is simply going to be the area which

is let us dA 1. So, this must be equal to dA 1 the projection of dA 1 in this direction. So,

this is going to be dA 1 cos theta 1 divided by r 1 square. So, this is how the solid angle

is evaluated.

So, if it is just part of a circle and if this is dL at a distance of r then the plane angle this

alpha let us call it as d alpha. So, d alpha is simply going to be dL by by r, that is this

standard relation when we were talking about a plane angle. And, when we are talking

about a solid angle like this, if this is the distance is r and this area is dA n then in that

case the d omega is simply going to be dA n by r square, where A n is the area normal to

this direction. So, that is what we call is that plane angle and what is known as the solid

angle. So, next thing is important because, next going to give us some more insights into

the whole process.
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And it is a very important quantity which is known as the black body emissive power.

So, what is a black body emissive power? The expression for which we need to find out

so, what is black body emissive power? It is the radiation energy per unit area of a black

body  at  T  at  an  absolute  temperature  T  in  all  directions  in  all  directions  in  a

hemispherical space. So, this is what is known as the black body emissive power and we

need to find out what would be it is expression based on our knowledge of blackbody

radiation intensity.

So,  whereas,  black  body  radiation  intensity  is  in  a  given  direction  the  black  body

emissive power is in all directions in a hemispherical space. So, the difference between

these 2 must be kept in mind in one case the radiation intensity specifies a direction. So,

it is the direction which is specified for the case of radiation intensity whereas, for the

case of emissive power it is assumed that the black body is placed at the center of a

hemisphere. And, we are trying to see what would be the total energy emitted by this

black body of unit area which is placed at the center of the hemisphere in all possible

directions. So, we need to find out we understand that this I b lambda T which we have

defined previously it has a directional dependence. So, the solid angle subtended by the

area at a distance from the center at a distance from the center is used to obtain what

is the black body radiation intensity. Now, what we have to do is we have to make this

area which is subtending a solid angle over here travel in such a way that it defines a

hemisphere.

So, if we can integrate the area in such a way that the entire hemispherical dome over

this unit surface area can be specified then the total energy which passes in all directions



in  the  hemispherical  space  at  a  given temperature  will  be known as  the black body

emissive power. And, that is what we are going to evaluate we are going to derive in this

in this part of the class.

So, from the intensity now we are going towards emissive power. In one case the area is

fixed it is dA 1 and we are trying to see what is the solid angle in the other case this area

is  essentially  the area  of  the  hemisphere.  So;  obviously,  the  solid  angle  will  change

depending on where this unit area is placed. So, this has to be taken into account while

evaluating this. So, let us draw the draw this first and see what we get out of this. The

first one let us say we have this is the area vector, this is the area, we would like to find

out what is going to be the intensity in this specific direction.

So, this is the preferred direction let us call it is omega and in this direction the intensity

is I b lambda T. The area over here is this is the area we are talking about and initially

this is the area dA at a temperature T. But, as you can see it is not perpendicular it is not

perpendicular to the direction of propagation of to the direction in which I would like to

find out I b lambda T.

So, what I do is I try to see: what is the azimuth angle of this area over here and this

being the angle theta. So, what I do is I will draw the projection of the green one dA and

therefore,  this  area is  simply going to be dA cos theta.  So, my dA cos theta  is now

perpendicular to the direction in which I would like to find out what is I b lambda  T.

Once again, the I b lambda T is the black body radiation intensity. In fact, spectral black

body radiation intensity at a given temperature in this at a specific direction which is a

this direction.

The object from where this intensity is coming is dA. So, I am going to take a projection

of this make the area of perpendicular to the direction. So, therefore, this area is to going

to be dA cos theta. So, if I write the intensity in this case which is I b lambda T should

equal to energy per unit area per unit wavelength and per unit solid angle. So, this is my

definition of the energy.



So, the spectral radiation energy let us the spectral radiation energy emitted by emitted

by dA by dA the surface element dA in which which through an elemental solid angle d

omega. So, this angle solid angle is d omega. So, this d omega I would like to find out

how much of how much of spectral radiation energy emitted by dA passes through the

solid angle d omega. So, this is the energy which is contained within this tube that I

would like to find out ok.

So, this must be equal to I b lambda T then cos theta d omega times dA d omega. So, this

energy; obviously, would be in order to obtain the energy I need to multiply the intensity

with area. So, this is going to be my area, the solid angle is this. So, this is the solid

angle, this is this is what is going to be the energy the spectral the spectral energy. So, if I

looked like to find out the energy by unit if I want to do it with in terms of unit area, it

should simply be equal to I b lambda T cos theta d omega.

I will go through it once again; my intensity is defined as energy per unit area per unit

wavelength per unit solid angle ok. So, the area is dA which makes an angle of theta with

the area vector. This d this dA and I would like to find out how much of energy is going

through this tube which forms a solid angle dA at this point. So, in order to do that the

first thing is I need to make sure that this area is placed in a direction perpendicular to

this.

So, which is going to be dA cos theta and this is this is this is the azimuth angle which

we will discuss later on. So, the energy per unit wavelength or in other words the spectral

energy would therefore, be the product of intensity times area which is perpendicular to

the direction times the solid angle. So, that in then it should be the spectral radiation

energy emitted by dA would be the intensity times area which is dA cos theta times solid

angle which is d omega. If you like to find out what is the spectral  radiation energy

emitted by an unit area I simply divided by dA and this is the expression of the spectral

radiation energy emitted by and unit area instead of dA an unit area.

So, this  is  the quantity  which I  am going to use,  but in order to effectively use this

quantity I need another factor ok. So, another figure so, the figure that I am going to use

going to draw is this one.
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So, this is a hemisphere which I am drawing of base radius r and this is a slice of that

which where the angle is d phi. And once I draw this it would be clear to clear to you.

The angle over here is theta and this angle, this small angle is d theta ok. And this is d

phi so, this one must be equal to r times d phi because this is a plane angle where the

radius is r and the angle is d phi. So, the length of the chord must be equal to d phi. This

when we go all the way up to 90 minus theta I get this line, if I go all the way to 90 I get

a point. If I go up to this point this is simply going to be r d phi sin theta ok.

So, when sin theta becomes equal to 90 which is at the top then would this would be

equal to 0. So, the length of the line will vanish, and it will become a point. When you

think of this one, this is d theta and the length the this thing the radius is r. So, therefore,

this one is simply going simply going to be equal to r times d theta.

So, if I project it slightly in a better way this is what you get as r d phi. And when you go

all the way up to this point so, this is d phi, this is d theta. So, what you get like this the

area this length is r d theta and this length has to be r d phi sin theta. So, my area which

is defined by the angles phi and theta is r d theta sin theta is 1 one dimension, the other

dimension is r times d theta.

So, therefore, from this figure my d omega the solid angle is simply going to be equal to

dA 1 divided by r square where dA 1 is this area. So, this area is dA 1, the area which is

denoted by the red crosses and this dA 1 is simply the product of these 2 length scales.



So, it is going to be r d theta is one length one side the other side is r d phi sin theta

divided by r square. So, this d omega is simply sin theta d theta d phi that is going to be

that is going to be the solid angle.

So,  when we go back to  this  figure  once again  I  have my spectral  radiation  energy

emitted by unit area is I b lambda T cos theta times d omega. So, I need to put instead of

d omega in this expression the d value of d omega that I have obtain. So, therefore, I b

lambda  T  cos  theta  d  omega  would  simply  be  equal  to  I  b  lambda  at  a  constant

temperature times cos theta sin theta d theta d phi. So, this is this is going to be the

spectral  radiation  energy  emitted  by  an  unit  surface  area  element  through  which

substance a solid angle equal to phi over here now.

Now, I would like to make integrate this expression in such a way such that this area is

going to represent the entire hemispherical area. So, if I can do the integration in such a

way that this area is going to encompass the entire hemispherical area. So, I can see that

in that integration my theta is going to vary from 0 to 90 degree, 0 to 90 degree and my

phi is going to vary from 0 to 2 pi that is what the variation is going to be. Let us look at

it to another way this is what I am trying to do.

So, in order to create  the hemispherical  space my phi is going to be from 0 to 2 pi

whereas, my theta is going to be from 0 to phi. So, if I can let this area travel in terms of

theta from 0 to 90 degree and in terms of phi from 0 to 2 pi then this area encompasses

the entire hemispherical area available to exposed when the black body is placed at the

center.

So, the black body the spectral skill depends on the wavelength the spectral blackbody

radiation  which  is  emitted  per  unit  surface  area  in  the  hemispherical  space  in  the

hemispherical space. Hemispherical space which is denoted as E b lambda T this is what

is the spectral black body radiation emitted per unit surface area into the hemispherical

space would simply be I b lambda T which is outside of the integration sign. And phi

would be from 0 to 2 pi and theta would be from 0 to pi by 2 and inside would be cos

theta sin theta d theta d phi.

One more time since it  is  black body radiation  intensity  so,  it  is  independent  of the

direction, since the black body radiation is diffuse. So, I b lambda T does not depend on

the direction and therefore, it can be taken out of the integration sign. So, what is left is



cos theta sin theta d theta d phi and as I have explained the theta the phi is going to vary

from 0 to 2 pi and theta is going to vary from 0 to pi by 2. If I perform this integration I

have an expression of E b lambda T in terms of I b lambda T. So, what that expression

would be? Once you perform this one once you perform this integration it is there in

your text.
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I am not going to do it over here it is a very simple integration. This is the expression for

body radiation the spectral blackbody emissive power. So, since it is so, it is energy per

unit area per unit wavelength that is going to be it is unit energy per unit area per unit

wavelength. So, the spectral black body radiation intensity is related to spectral emissive

power of an unit based on an unit area. In a hemispherical space is denoted by specific

relation.

So, when you use function for I b lambda T E b lambda T would be c 1. So, the emissive

power the spectral emissive power of a black body of unit area at a given temperature is

provided as a function of wavelength and as a function of temperature. So, this is the

important part.

So, E b lambda T is a function of lambda and is a function of temperature. This specific

expression  will  be  utilized  in  the  next  class  to  show how the  emissive  power  of  a

blackbody  spectral  emissive  power  of  a  black  body depends  on the  wavelength  and

depends on the temperature.



So, what we have done in this class is we have placed a black body of unit area inside

hemispherical dome. And, we have found out what is the total emissive power of this

black body having unit area at a given temperature, what is the spectral power emissive

power of black this black body into the hemispherical space.

So, this is what it looks like, in this hemispherical space how much of radiative energy a

black body of unit area at a given temperature is providing. So, this is related to the

intensity of radiation and we know the intensity of radiation through the use of Planck’s

function.

And then we can find out E b lambda T as a function of the wavelength and as a function

of temperature. So, this functional relation we will explore a bit further and then you

would see that it is going to give rise to certain relations that we know of; for example,

the most common example or relation of radiation the Stefan Boltzmann law can be

directly derived from this blackbody emissive power.

So, we will do that in the next class.
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Problem

In the previous class, we spoke about the Black body Emissive Power and we wanted to

see what is the relation between the Black Body Emissive Power commonly denoted by

bE  at a given temperature with the black body radiation intensity. And the relation which

we  have  obtained  considering  a  black  body  of  unit  area  placed  at  the  centre  of  a

hemisphere and measuring what is the total energy emitted per unit time per unit area per

unit wavelength by a black body into the hemispherical space.  We  have obtained the

relation between the emissive power and the intensity of blackbody radiation.

   (Refer Slide Time: 01:07)

So, the relation that we have obtained is the following 

( ) ( )b bE T I T  W/m2μm

where  ( )bE T is the spectral black body radiation flux which is essentially the energy

emitted by a black body at any given temperature T. We need to remember that this T, the

temperature in radiation always does refer to the absolute temperature per unit area per

unit wavelength about that wavelength λ per unit time.



 And this micron refers to the wavelength of the radiation,  that is wavelength of the

radiation.

If  you remember  the units  of  ( )bI T that  has  units  of  W/m2μmsr,  but  since we have

integrated this over the entire hemispherical space taking into account the variation of the

angle. So, therefore, this  ( )bE T does not contain any steradian, any solid angle. So, if

this is the formula and we already know through use of Planck’s function; what is the

expression for ( )bI T .

So, using the Planck’s function for ( )bI T , I can write 

 
1

5
2

( )
exp[ / ] 1b

C
E T

C KT



  W/m2μm

The only thing that we have done in this, to this expression is substituted the expression

for the intensity from Planck’s function which we have discussed in the previous class.

So, when you do that, then you get this expression for the black body radiation flux and

the C1 and C2 are constants. So, 
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So,  what  this  expression  tells  us  is  that  at  any  given  temperature  and at  any given

wavelength ( )bE T can be computed. So, not only you can and so,  ( )bE T is a function

both of temperature and of wavelength and therefore, if you know the wavelength and

the temperature, the black body radiation flux can be computed.

So, provided we know what is the temperature,  then the spectral  blackbody emissive

power, I use the word spectral here purposefully to stress that the black body radiation

intensity will also depend on the wavelength at which we are measuring the radiation

flux.

So, all these are strongly dependent on the wavelength. Therefore, since we know now

what is the relation between ( )bE T , which is the black body radiation flux with λ and T,

we can plot  the black body radiation  function as  a function  of λ,  the wavelength  at

different values of temperature.



Once again,  ( )bE T is a function of wavelength and is a function of temperature.  So,

keeping one constant in this case the temperature constant, I can compute the variation of

( )bE T with λ and then, I can choose another value of temperature and again compute the

same variation of ( )bE T as a function of  λ.

So, I get a series of curves, the series of curves at different values of temperature which

shows the variation of the black body radiation flux as a function of wavelength given by

the expression which is shown over here. So, I fix T and plot ( )bE T as a function of λ

and then, I choose a different value of temperature and plot this again. Therefore, this

would result in a family of curves which would look something like this.

(Refer Slide Time: 05:56)

So, the variation of  ( )bE T as a function of wavelength will show variations like this.

These are at different values of temperature T1, T2, T3 etcetera and this T1 is greater than

T2 greater than T3 greater than T4 and so on. So, the top one, top curve corresponds to the

highest temperature, the bottom curve corresponds to the lowest temperature.

So,  if  these  maxima  the  point  at  which  the  ( )bE T is  a  maximum;  that  means,  the

blackboard emissive power is maximum, if these points are joined together, the locus of

this line is very interesting. It is λT corresponding to the maximum value of  ( )bE T



is simply a constant 2897.6 μmK. The always in radiation the wavelength is referred to

as a wavelength is expressed in microns and T is in Kelvin. So, I will go through it once

again.

Using the formulation that what we have written in the previous slide, let me write it

once again here. 

 
1

5
2

( )
exp[ / ] 1b

C
E T

C KT



  W/m2μm

Using this formulation, I fix temperature. Let us say I have taken the temperature to be

equal to T1 here and this is T2, T3 and T4.

So, if I fix T1, I can plot ( )bE T  as a function of λ. This is its variation. Then, I fix the

temperature at T2 slightly lower than T1 and compute this function once again and this is

what I am going to get corresponding to T2. Then, T3 which is less than T2 this is the

distribution of ( )bE T as a function of λ. Interestingly, when you look at the maxima of

these curves, what you see is that the product of λT corresponding to the max of ( )bE T

is a constant.

  2897.6
MAX

T 
μmK

So, if you find out what is the corresponding λand what is the value of T4; if you multiply

them  together  and  you  find  out  what  is  the  corresponding  λ  and  what  is  the

corresponding temperature T1; so, essentially it will tell you that 

   1 1 2 2MAX MAX
T T 

This relation that λ corresponding to maximum ( )bE T  is a constant is known as Wein’s

Displacement Law.

So, what it states is that if you know the temperature, if you know the temperature, then

the corresponding value of the wavelength at which ( )bE T  is a maximum can be simply

obtained by this relation. We will see its use in subsequent our subsequent analysis, but

let us do something which is even more which we know even better.
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So, the radiation energy that is emitted by a black body, by a black body at T over all

wavelengths so, the expression that I have this is the emission radiation emission by a

black body at a specific wavelength.

But we probably are more interested in to finding out what is the total energy emitted by

the black body over all possible wavelengths. So, mathematically speaking, I would like

to know what is the total energy emitted by the black body over a wavelength range of 0

to ∞. So, if I could find out the total if I would like to find out what is the total energy

emitted by the black body.

Then, the spectral black body radiation must be integrated over all possible values of

wavelength. So, 

 
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So, that is how you obtain the total amount of energy emitted by a black body at an

absolute temperature of T, which is what we are going to do next.

Since,  what  we  are  just  saying  that  this  must  be  equal  to  integration  from 0  to  ∞.

0

( ) "bE T d 



 that  is  a  standard  definition  I  have  put  the  expression  incorporating

Planck’s distribution.



So, 
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85.67 10   W/m2K4 =Stephan Boltzmann Constant

    
4( )bE T T W/m2

So, the expression the unit for ( )bE T is W/m2μm. Since, you have integrated it over all

possible wavelength.  So, therefore,  this  one will  not have this micron over here it  is

simply  W/m2.  And  this  sigma,  you are  well  aware  of  this  is  known as  the  Stephen

Boltzmann Constant. Stephen Boltzmann Constant and the value of this σ is 
85.67 10

W/m2K4 this relation obviously, then is known as the Stephen Boltzmann Law.

So,  this  is  one of the unique laws of radiation  which tells  you that  the total  energy

emitted by a black body at an absolute temperature T per unit area per unit time is a

function of absolute temperature to the power 4 and the constant of proportionality is

simply  σ  is  which  is  a  constant  which  can  be  evaluated  by  evaluating  this  definite

integral and it has a numerical value of 
85.67 10  W/m2K4  and this σ is known as the

Stephen Boltzmann Constant.

So, what we then see is there are two interesting observations from here. The first of all

that the black body radiation function, the black body that emissive power of a black

body is a function of wavelength and is a function of temperature. Since it is a function

of wavelength so that is why the emissive power of a blackbody, we use the adjective

spectral  before  it  to  underscore  the  importance  of  wavelength  while  specifying  the

emissive power of a black body.

Now, when you integrate  it  over  all  possible  wavelengths,  what  you get  is  the  total

emissive power of the black body at  that given temperature.  So,  it  is  the amount of

energy emitted by a black body per unit area per unit time over all wavelengths possible.

So, that is why its total and I can drop the spectral from the 



description  of  the  emissive power.  The moment  I  integrate  over  it  and the result  of

disintegration is the Stephen Boltzmann Law.

In some applications, you are not interested to know what is the total power emitted by

the black body. You are more interested to find out what is the power emitted by the

black  body within a  certain  wavelength  range let  us say you would like to  find out

between 2 to 4 μm, how much of the energy is going to be concentrated.

So, the entire blackbody emits radiation starting at λ=0 to λ=∞, but you would not want

that; you want within a specific range of λ how much of energy is going to be released,

how much energy is going to be emitted by the black body as a fraction of the total

energy emitted by the black body.

So,  this  is  an  important  parameter  which  we  will  keep  on  using  in  our  subsequent

discussion. That means, the fraction of energy emitted by a black body within a specific

wavelength range. So, that is that is known as the Black Body Radiation Function.
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So, we would see what is a Blackbody Radiation Function? So, Blackbody Radiation

Function as I have expressed to you; so, it is between a wavelength from 0 to λ at a given

temperature is the amount of energy emitted by the black body between 0 to



λ divided by 0 to ∞; that means, the total energy emitted by the black body at that a

given temperature.

So, once again, the fraction the black body radiation function, the fraction of energy

which is emitted by the black body within a wavelength range from 0 to λ is nothing but

the amount of energy emitted by the black body between 0 to δ divided by the amount of

energy emitted by the black body over 0 to ∞. So, this is the total energy and this is the

amount of energy within a fixed wavelength range.
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So, this integral can be evaluated and 0 ( )f T  can be calculated for a given λT. So, you

would I guess in the idea behind this is very clear to you. I am trying to find out the

fraction of energy which is emitted by the black body that is going to be concentrated

within a wavelength range of 0 to λ.

So, if this is a fraction, then this is going to be the energy which is going to be within 0 to

λby the total energy emitted by the black body. Total energy emitted by the black body is

nothing but is σT4 and this can be substituted by the Planck’s function as we have done

before. When you incorporate that you get the fraction in this form. This is again an

integral equation which can be evaluated provided you specify λ and  T.  So, once you

specify λ and T, this fraction can be evaluated.
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So, this fraction is calculated for a given λ times T and you would see that the results of

the fraction is provided in a table.

So, in that table the total  emissive power of a black body within which is contained

within the wavelength range is provided as a function of T and as a function of λ. So, one

you must keep in mind that this T is always going to be in Kelvin and λ is going to be in

micron.
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So, if you look at the table now, the table here shows you; the table here shows you the

value of λT in micron and this is 
5
bE

T


. This is how the fraction is shown. So, you know

what is λT. Let us say you pick a value of λT to be over here. λT is 2777.8. So, any

combination of λ and T which gives the products to be about 2777, it would give you a

value of the f as 0.22.
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So, let us write it over here if I write it in this so, for a value of λT equal to 2777, the

value of the fraction is 0.2285. So, for λT equals 2777.8, the value of f is going to be

equal 0.22. So, which means that you choose some value of λ and T, the product comes

close to 2777.8. So, if that is the case, then within that wavelength range at that given

temperature, you can find out what is the fraction of energy that is emitted by the black

body is contained within the wavelength.

And I think it would be more clear to you once we solve a problem using the table and

this f the black body radiation function, the table of blackbody radiation function you can

refer to and find out that given the value of λ and T what is the fraction that is going to

be, what is a black body radiation function. So, we will quickly solve 1 problem and I

think that would clarify any remaining doubts that you may have. But fundamentally, we

are finding out the fraction of energy which is contained within 0 to



some λ at a given temperature for the blackbody emissions. So, let us quickly solve 1

problem and then we will move on.
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So, what the problem says is that the emission is from a surface, from a black body at

T=1000 K. The first part is what fraction of the total energy is emitted below λ=5μm. So,

what we need to do then is this my λ=5μm, T is 1000 K. So, λT is 5000 μm.K.

So, when we would say fraction. So, I would like to find out 0 to 5 μm. The value of the

black body radiation function between 0 to 5 μm, fundamentally what this tells us is f 0

to  5  is  the  fraction  of  the  total  energy  that  is  emitted  by  a  black  body  at  a  given

temperature between the range 0 to 5 μm. So, from the adjoining table, I need to find out

what is the value of f of 0 to 5 μm.
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So, for which case λT is 5000 μm.K. So, if you look at the value over here for a value of

λT to be equal to 5000 μm.K , the value of f is 0.66371. So, from the table, I read that

this is equal to 0.6637 for λT equals 5000 μm.K which simply tells me that 66.4 % or

0.664; the fraction 66.4 % of the total energy is emitted by the black body at 1000 K,

below λ=5 μm; that means, this is the value of the of the fraction.

Second question is what is the wavelength below which the emission is 10.5 % of the

total emission at 1000 K? So, it is reverse of the previous problem. In this case f 0-λ at a

given temperature of 1000 K is provided to be 0.105.  We need to find out what is the

value of λ. So, once again the emission is

10.5  % of  the  total  emission  at  1000  K.  So the  fraction  which  of  energy  which  is

contained between 0 to the unknown λ at 1000 K is specified to be

0.105. We need to find out what is the value of λ for such a case.

Once again, we look at the table and when we look at the table, now we have to look at λ

to be the fraction to be 0.105. So, when you look at the fraction to be 0.105, you read the

value of λT to be 2222 μm.K. So, this refers to the value of λT. And since, you know the

temperature to be equals 1000 K. So, therefore, your λis simply going to be 2.222 μm.



So, at 1000 K, the emission is going to be

10.5 % of the total emission at and wavelength of 2.2 μm and the third one is. So, what is

the  wavelength?  What  is  the  λ  at  which  the  maximum  spectral emission  occurs  at

T=1000K .

So,  the  third  question  is  what  is  the  wavelength  at  which  you are  going to  get  the

maximum spectral  emission?  The  moment  I  say  spectral  that  means,  its  wavelength

dependent so, the value of the temperature is provided to you; you have to find out what

is the wavelength at which the emission is going to be maximum.

So, of course the law that is that we need to use for this is Wein’s Displacement Law.

The Wein’s Displacement Law simply states that λT is a constant when we are talking

about  the  maximum  spectral  radiation  intensity  at  a  given  temperature.  Since  the

temperature over here is provided we need to find out what is the λ in this case. So, this

problem can simply be solved using Wein’s Law as λT corresponding to the maximum

emission is 2897.6 μm.K. So, for T= 1000K, this λ would simply be equals to 2.8976

μm. So, therefore,  if  your  temperature  is  at  1000 K,  then the maximum the spectral

maximum of emission from a black body at 1000 K will take place at a wavelength of

2.8 μm.

So, what we have discussed, if I would like to do a summary of this is that looking at the

black body emission when incorporating the Planck’s formula in it, we have derived the

Wein’s  Displacement  Law  which  shows  that  the  product  of  λT  corresponding  to

maximum spectral emission from a black body is a constant which is 2897.6 μm.K.

Secondly, the spectral emission if you would like to convert it to the total emission from

a black  body over  all  possible  wavelengths  that  would  give  rise  to  the  well  known

Stephen  Boltzmann  Law  where  the  proportionality  between  the  emission  and  the

temperature  is  E  is  proportional  to  T4 and  the  proportionality  constant  is  Planck’s

constant.

Next,  we wanted to know the fraction of energy which is  emitted between a certain

wavelength range as compared to the total  energy emitted by the black body overall

wavelength range. So, this black body radiation function is evaluated for different values



of  the  product  of  λ  and  T  different  values  of  the  product  of  the  wavelength  and

temperature.

So, these black body radiation functions provide us with the knowledge of how much of

energy is going to be emitted by a black body at a given temperature within a specific

range of wavelengths. And we have solved the problem numerical problem which I think

would clarify any doubts that you may have in the use of Wein’s Displacement Law, the

Stephen Boltzmann Law and the Blackbody Radiation Function.
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